Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.

Identifieur interne : 004572 ( Ncbi/Merge ); précédent : 004571; suivant : 004573

Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.

Auteurs : Grishma Vadlamani [Canada] ; Keith A. Stubbs [Australie] ; Jérôme Désiré [France] ; Yves Blériot [France] ; David J. Vocadlo ; Brian L. Mark [Canada]

Source :

RBID : pubmed:28370529

Descripteurs français

English descriptors

Abstract

NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.

DOI: 10.1002/pro.3166
PubMed: 28370529

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28370529

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.</title>
<author>
<name sortKey="Vadlamani, Grishma" sort="Vadlamani, Grishma" uniqKey="Vadlamani G" first="Grishma" last="Vadlamani">Grishma Vadlamani</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</nlm:affiliation>
<orgName type="university">Université du Manitoba</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stubbs, Keith A" sort="Stubbs, Keith A" uniqKey="Stubbs K" first="Keith A" last="Stubbs">Keith A. Stubbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desire, Jerome" sort="Desire, Jerome" uniqKey="Desire J" first="Jérôme" last="Désiré">Jérôme Désiré</name>
<affiliation wicri:level="4">
<nlm:affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9</wicri:regionArea>
<wicri:noRegion>86073, Poitiers cedex 9</wicri:noRegion>
<orgName type="university">Université de Poitiers</orgName>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bleriot, Yves" sort="Bleriot, Yves" uniqKey="Bleriot Y" first="Yves" last="Blériot">Yves Blériot</name>
<affiliation wicri:level="4">
<nlm:affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9</wicri:regionArea>
<wicri:noRegion>86073, Poitiers cedex 9</wicri:noRegion>
<orgName type="university">Université de Poitiers</orgName>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vocadlo, David J" sort="Vocadlo, David J" uniqKey="Vocadlo D" first="David J" last="Vocadlo">David J. Vocadlo</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6.</nlm:affiliation>
<wicri:noCountry code="subField">V5S 1P6</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mark, Brian L" sort="Mark, Brian L" uniqKey="Mark B" first="Brian L" last="Mark">Brian L. Mark</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</nlm:affiliation>
<orgName type="university">Université du Manitoba</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28370529</idno>
<idno type="pmid">28370529</idno>
<idno type="doi">10.1002/pro.3166</idno>
<idno type="wicri:Area/PubMed/Corpus">000A59</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A59</idno>
<idno type="wicri:Area/PubMed/Curation">000A56</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A56</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A56</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A56</idno>
<idno type="wicri:Area/Ncbi/Merge">004572</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.</title>
<author>
<name sortKey="Vadlamani, Grishma" sort="Vadlamani, Grishma" uniqKey="Vadlamani G" first="Grishma" last="Vadlamani">Grishma Vadlamani</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</nlm:affiliation>
<orgName type="university">Université du Manitoba</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stubbs, Keith A" sort="Stubbs, Keith A" uniqKey="Stubbs K" first="Keith A" last="Stubbs">Keith A. Stubbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desire, Jerome" sort="Desire, Jerome" uniqKey="Desire J" first="Jérôme" last="Désiré">Jérôme Désiré</name>
<affiliation wicri:level="4">
<nlm:affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9</wicri:regionArea>
<wicri:noRegion>86073, Poitiers cedex 9</wicri:noRegion>
<orgName type="university">Université de Poitiers</orgName>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bleriot, Yves" sort="Bleriot, Yves" uniqKey="Bleriot Y" first="Yves" last="Blériot">Yves Blériot</name>
<affiliation wicri:level="4">
<nlm:affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9</wicri:regionArea>
<wicri:noRegion>86073, Poitiers cedex 9</wicri:noRegion>
<orgName type="university">Université de Poitiers</orgName>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vocadlo, David J" sort="Vocadlo, David J" uniqKey="Vocadlo D" first="David J" last="Vocadlo">David J. Vocadlo</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6.</nlm:affiliation>
<wicri:noCountry code="subField">V5S 1P6</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mark, Brian L" sort="Mark, Brian L" uniqKey="Mark B" first="Brian L" last="Mark">Brian L. Mark</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</nlm:affiliation>
<orgName type="university">Université du Manitoba</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylglucosamine (analogs & derivatives)</term>
<term>Acetylglucosamine (chemistry)</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli Proteins (antagonists & inhibitors)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Glycoside Hydrolases (antagonists & inhibitors)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Oximes (chemistry)</term>
<term>Phenylcarbamates (chemistry)</term>
<term>Protein Domains</term>
<term>Protein Structure, Secondary</term>
<term>beta-Lactam Resistance</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétyl-glucosamine ()</term>
<term>Acétyl-glucosamine (analogues et dérivés)</term>
<term>Domaines protéiques</term>
<term>Escherichia coli (enzymologie)</term>
<term>Escherichia coli (génétique)</term>
<term>Glycosidases ()</term>
<term>Glycosidases (antagonistes et inhibiteurs)</term>
<term>Glycosidases (génétique)</term>
<term>Oximes ()</term>
<term>Phényl-carbamates ()</term>
<term>Protéines Escherichia coli ()</term>
<term>Protéines Escherichia coli (antagonistes et inhibiteurs)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Résistance aux bêta-lactamines</term>
<term>Structure secondaire des protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Acetylglucosamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acetylglucosamine</term>
<term>Escherichia coli Proteins</term>
<term>Glycoside Hydrolases</term>
<term>Oximes</term>
<term>Phenylcarbamates</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acétyl-glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glycosidases</term>
<term>Protéines Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Escherichia coli Proteins</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Glycosidases</term>
<term>Protéines Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Domains</term>
<term>Protein Structure, Secondary</term>
<term>beta-Lactam Resistance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétyl-glucosamine</term>
<term>Domaines protéiques</term>
<term>Glycosidases</term>
<term>Oximes</term>
<term>Phényl-carbamates</term>
<term>Protéines Escherichia coli</term>
<term>Résistance aux bêta-lactamines</term>
<term>Structure secondaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28370529</PMID>
<DateCreated>
<Year>2017</Year>
<Month>04</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>07</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-896X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>1161-1170</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pro.3166</ELocationID>
<Abstract>
<AbstractText>NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.</AbstractText>
<CopyrightInformation>© 2017 The Protein Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vadlamani</LastName>
<ForeName>Grishma</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stubbs</LastName>
<ForeName>Keith A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Désiré</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blériot</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vocadlo</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mark</LastName>
<ForeName>Brian L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010091">Oximes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048448">Phenylcarbamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>132489-69-1</RegistryNumber>
<NameOfSubstance UI="C068836">N-acetylglucosaminono-1,5-lactone O-(phenylcarbamoyl)oxime</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V956696549</RegistryNumber>
<NameOfSubstance UI="D000117">Acetylglucosamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):271-81</RefSource>
<PMID Version="1">21460445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antimicrob Agents Chemother. 1997 Oct;41(10):2113-20</RefSource>
<PMID Version="1">9333034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</RefSource>
<PMID Version="1">16369096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioorg Med Chem. 2009 Aug 1;17(15):5598-604</RefSource>
<PMID Version="1">19592259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2013 Dec 4;49(93):10983-5</RefSource>
<PMID Version="1">24136176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antimicrob Agents Chemother. 2009 Jun;53(6):2274-82</RefSource>
<PMID Version="1">19273679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 2009 Jul;18(7):1541-51</RefSource>
<PMID Version="1">19499593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antimicrob Agents Chemother. 2010 Sep;54(9):3557-63</RefSource>
<PMID Version="1">20566764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2000 Jan;33(1):11-8</RefSource>
<PMID Version="1">10639071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Dec 15;275(50):39032-8</RefSource>
<PMID Version="1">10978324</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2015 Feb 20;290(8):4887-95</RefSource>
<PMID Version="1">25533455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 1996 Jun 1;316 ( Pt 2):695-6</RefSource>
<PMID Version="1">8687420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1994 Oct 3;13(19):4684-94</RefSource>
<PMID Version="1">7925310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Org Biomol Chem. 2006 Mar 7;4(5):839-45</RefSource>
<PMID Version="1">16493467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Microbiol Biotechnol. 2011 Oct;92(1):1-11</RefSource>
<PMID Version="1">21796380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Chem Biol. 2008 Oct;12(5):539-55</RefSource>
<PMID Version="1">18558099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</RefSource>
<PMID Version="1">24270786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 1996 Jul;3(7):638-48</RefSource>
<PMID Version="1">8673609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Jul 20;282(29):21382-91</RefSource>
<PMID Version="1">17439950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2000 Sep;182(17):4836-40</RefSource>
<PMID Version="1">10940025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2005 Sep 27;44(38):12809-18</RefSource>
<PMID Version="1">16171396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</RefSource>
<PMID Version="1">20124702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Nov 12;285(46):35675-84</RefSource>
<PMID Version="1">20826810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Med Chem Lett. 2012 Mar 8;3(3):238-242</RefSource>
<PMID Version="1">22844551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2016 Nov 29;435:106-112</RefSource>
<PMID Version="1">27744113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2000 Jan 11;39(1):117-26</RefSource>
<PMID Version="1">10625486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1991 May 8;197(3):815-8</RefSource>
<PMID Version="1">2029909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Mar 30;276(13):10330-7</RefSource>
<PMID Version="1">11124970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Org Biomol Chem. 2016 Apr 7;14 (13):3432-42</RefSource>
<PMID Version="1">26963691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1997 Mar 21;88(6):823-32</RefSource>
<PMID Version="1">9118225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Biol. 2012 Nov 21;19(11):1471-82</RefSource>
<PMID Version="1">23177201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</RefSource>
<PMID Version="1">15572765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chembiochem. 2013 Oct 11;14(15):1973-81</RefSource>
<PMID Version="1">24009110</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000117" MajorTopicYN="N">Acetylglucosamine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010091" MajorTopicYN="N">Oximes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048448" MajorTopicYN="N">Phenylcarbamates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018440" MajorTopicYN="Y">beta-Lactam Resistance</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AmpC</Keyword>
<Keyword MajorTopicYN="N">EtBuPUG</Keyword>
<Keyword MajorTopicYN="N">GH3</Keyword>
<Keyword MajorTopicYN="N">N-acetyl-β-d-glucosaminidase</Keyword>
<Keyword MajorTopicYN="N">NagZ</Keyword>
<Keyword MajorTopicYN="N">PUGNAc</Keyword>
<Keyword MajorTopicYN="N">family 3</Keyword>
<Keyword MajorTopicYN="N">trihydroxyazepane</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2018</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28370529</ArticleId>
<ArticleId IdType="doi">10.1002/pro.3166</ArticleId>
<ArticleId IdType="pmc">PMC5441427</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Canada</li>
<li>France</li>
</country>
<region>
<li>Manitoba</li>
<li>Poitou-Charentes</li>
</region>
<settlement>
<li>Poitiers</li>
<li>Winnipeg</li>
</settlement>
<orgName>
<li>Université de Poitiers</li>
<li>Université du Manitoba</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Vocadlo, David J" sort="Vocadlo, David J" uniqKey="Vocadlo D" first="David J" last="Vocadlo">David J. Vocadlo</name>
</noCountry>
<country name="Canada">
<region name="Manitoba">
<name sortKey="Vadlamani, Grishma" sort="Vadlamani, Grishma" uniqKey="Vadlamani G" first="Grishma" last="Vadlamani">Grishma Vadlamani</name>
</region>
<name sortKey="Mark, Brian L" sort="Mark, Brian L" uniqKey="Mark B" first="Brian L" last="Mark">Brian L. Mark</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Stubbs, Keith A" sort="Stubbs, Keith A" uniqKey="Stubbs K" first="Keith A" last="Stubbs">Keith A. Stubbs</name>
</noRegion>
</country>
<country name="France">
<region name="Poitou-Charentes">
<name sortKey="Desire, Jerome" sort="Desire, Jerome" uniqKey="Desire J" first="Jérôme" last="Désiré">Jérôme Désiré</name>
</region>
<name sortKey="Bleriot, Yves" sort="Bleriot, Yves" uniqKey="Bleriot Y" first="Yves" last="Blériot">Yves Blériot</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004572 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 004572 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:28370529
   |texte=   Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:28370529" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024