Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Viruses and the origin of microbiome selection and immunity.

Identifieur interne : 004043 ( Ncbi/Merge ); précédent : 004042; suivant : 004044

Viruses and the origin of microbiome selection and immunity.

Auteurs : Steven D. Quistad [États-Unis] ; Juris A. Grasis [États-Unis] ; Jeremy J. Barr [États-Unis] ; Forest L. Rohwer [États-Unis]

Source :

RBID : pubmed:27983723

Descripteurs français

English descriptors

Abstract

The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.

DOI: 10.1038/ismej.2016.182
PubMed: 27983723

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27983723

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Viruses and the origin of microbiome selection and immunity.</title>
<author>
<name sortKey="Quistad, Steven D" sort="Quistad, Steven D" uniqKey="Quistad S" first="Steven D" last="Quistad">Steven D. Quistad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grasis, Juris A" sort="Grasis, Juris A" uniqKey="Grasis J" first="Juris A" last="Grasis">Juris A. Grasis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barr, Jeremy J" sort="Barr, Jeremy J" uniqKey="Barr J" first="Jeremy J" last="Barr">Jeremy J. Barr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rohwer, Forest L" sort="Rohwer, Forest L" uniqKey="Rohwer F" first="Forest L" last="Rohwer">Forest L. Rohwer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27983723</idno>
<idno type="pmid">27983723</idno>
<idno type="doi">10.1038/ismej.2016.182</idno>
<idno type="wicri:Area/PubMed/Corpus">000E84</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E84</idno>
<idno type="wicri:Area/PubMed/Curation">000E81</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E81</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E81</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E81</idno>
<idno type="wicri:Area/Ncbi/Merge">004043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Viruses and the origin of microbiome selection and immunity.</title>
<author>
<name sortKey="Quistad, Steven D" sort="Quistad, Steven D" uniqKey="Quistad S" first="Steven D" last="Quistad">Steven D. Quistad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grasis, Juris A" sort="Grasis, Juris A" uniqKey="Grasis J" first="Juris A" last="Grasis">Juris A. Grasis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barr, Jeremy J" sort="Barr, Jeremy J" uniqKey="Barr J" first="Jeremy J" last="Barr">Jeremy J. Barr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rohwer, Forest L" sort="Rohwer, Forest L" uniqKey="Rohwer F" first="Forest L" last="Rohwer">Forest L. Rohwer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Immune System Phenomena (genetics)</term>
<term>Microbiota (physiology)</term>
<term>Mucus (immunology)</term>
<term>Mucus (virology)</term>
<term>Viruses (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Microbiote (physiologie)</term>
<term>Mucus (immunologie)</term>
<term>Mucus (virologie)</term>
<term>Phénomènes du système immunitaire (génétique)</term>
<term>Virus (génétique)</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immune System Phenomena</term>
<term>Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phénomènes du système immunitaire</term>
<term>Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Mucus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Mucus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Microbiote</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Mucus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Mucus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27983723</PMID>
<DateCreated>
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Viruses and the origin of microbiome selection and immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>835-840</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2016.182</ELocationID>
<Abstract>
<AbstractText>The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Quistad</LastName>
<ForeName>Steven D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grasis</LastName>
<ForeName>Juris A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3945-0135</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barr</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5603-5294</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rohwer</LastName>
<ForeName>Forest L</ForeName>
<Initials>FL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, San Diego, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Immunol Rev. 1996 Aug;152:157-73</RefSource>
<PMID Version="1">8930672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2016 Feb 12;12(2):e1005861</RefSource>
<PMID Version="1">26871586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2001 Dec;8(12):1143-56</RefSource>
<PMID Version="1">11753563</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Dec 11;516(7530):165-6</RefSource>
<PMID Version="1">25503219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16209-14</RefSource>
<PMID Version="1">17911254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10771-6</RefSource>
<PMID Version="1">23690590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 1977 May 1;78(1):267-76</RefSource>
<PMID Version="1">860403</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1992 Apr 2;356(6368):397-400</RefSource>
<PMID Version="1">1557121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Viruses. 2011 Oct;3(10):1933-58</RefSource>
<PMID Version="1">22069523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2001 Dec;8(12):1197-206</RefSource>
<PMID Version="1">11753567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2010 May;11(5):373-84</RefSource>
<PMID Version="1">20404851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Feb 16;291(5507):1279-84</RefSource>
<PMID Version="1">11181990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Dec 04;9(12):e113231</RefSource>
<PMID Version="1">25474640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2010 Jan;8(1):15-25</RefSource>
<PMID Version="1">19946288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 1982;144:53-74</RefSource>
<PMID Version="1">7044068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Mar 4;428(6978):66-70</RefSource>
<PMID Version="1">14999280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2016 Jan 1;129(1):108-20</RefSource>
<PMID Version="1">26729029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2015 Aug 18;13(8):e1002226</RefSource>
<PMID Version="1">26284777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2014 Dec;8(12):2411-22</RefSource>
<PMID Version="1">24950107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2010 Jun;4(6):739-51</RefSource>
<PMID Version="1">20147985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Oct 24;9(10):e109952</RefSource>
<PMID Version="1">25343582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2016 Mar 4;351(6277):1083-7</RefSource>
<PMID Version="1">26941318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2000 Sep;64(3):503-14</RefSource>
<PMID Version="1">10974124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2000 Dec;1(6):489-95</RefSource>
<PMID Version="1">11101870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):352-61</RefSource>
<PMID Version="1">23478383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2009 Apr;31(4):478-86</RefSource>
<PMID Version="1">19274660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2003 Sep;3(9):745-56</RefSource>
<PMID Version="1">12949498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2010 Jul;84(13):6876-9</RefSource>
<PMID Version="1">20375161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiology. 2010 Nov;156(Pt 11):3368-78</RefSource>
<PMID Version="1">20847011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2015 Jan;1850(1):236-52</RefSource>
<PMID Version="1">24821013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dis. 2014 Dec;1(2):132-139</RefSource>
<PMID Version="1">25642449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3962-6</RefSource>
<PMID Version="1">22355105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2009 Nov;83(22):11765-76</RefSource>
<PMID Version="1">19726510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Symp Quant Biol. 2009;74:65-80</RefSource>
<PMID Version="1">20375317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2001 Feb;8(2):113-26</RefSource>
<PMID Version="1">11313713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Nov 5;274(45):31751-4</RefSource>
<PMID Version="1">10542193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 1976 Apr;173(2):528-37</RefSource>
<PMID Version="1">1275505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Integr Comp Biol. 2003 Feb;43(1):3-10</RefSource>
<PMID Version="1">21680404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 May 17;447(7142):326-9</RefSource>
<PMID Version="1">17507983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2012 Dec;76(4):792-812</RefSource>
<PMID Version="1">23204367</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18413-8</RefSource>
<PMID Version="1">19017800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Apoptosis. 2010 Mar;15(3):269-78</RefSource>
<PMID Version="1">20041301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2002 Aug 15;307(2):244-51</RefSource>
<PMID Version="1">12202240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioorg Med Chem. 2005 Sep 1;13(17):5021-34</RefSource>
<PMID Version="1">16005634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2006 Jun 2;359(2):496-507</RefSource>
<PMID Version="1">16631788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Mar 25;307(5717):1915-20</RefSource>
<PMID Version="1">15790844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gut Microbes. 2010 Jul;1(4):254-268</RefSource>
<PMID Version="1">21327032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1986 Mar 28;44(6):817-29</RefSource>
<PMID Version="1">3955651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(12):e51054</RefSource>
<PMID Version="1">23236432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Immunol. 2005 Apr;26(4):193-8</RefSource>
<PMID Version="1">15797509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Sep 13;489(7415):220-30</RefSource>
<PMID Version="1">22972295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2014 Dec;31(12):3282-301</RefSource>
<PMID Version="1">25205508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Discov. 2016 Jul 18;2:16058</RefSource>
<PMID Version="1">27551546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Chem. 2001 Feb;382(2):143-9</RefSource>
<PMID Version="1">11308013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Cell Infect Microbiol. 2015 Jan 07;4:176</RefSource>
<PMID Version="1">25621279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virol Sin. 2015 Feb;30(1):3-10</RefSource>
<PMID Version="1">25595214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Physiol. 1995;57:635-57</RefSource>
<PMID Version="1">7778881</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2005 Feb;15(2):153-64</RefSource>
<PMID Version="1">15385431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13675-80</RefSource>
<PMID Version="1">26483471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents</RefSource>
<PMID Version="1">15353570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9567-72</RefSource>
<PMID Version="1">24927546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2016 Jan 16;17:62</RefSource>
<PMID Version="1">26772977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2001 Jan;23(1):46-53</RefSource>
<PMID Version="1">11135308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):6049-54</RefSource>
<PMID Version="1">17392426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2003 Nov;185(21):6467-71</RefSource>
<PMID Version="1">14563883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2012;10(11):e1001424</RefSource>
<PMID Version="1">23185130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Microbiol. 2016 Jun;24(6):440-9</RefSource>
<PMID Version="1">26826796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2015 Jun 11;522(7555):221-5</RefSource>
<PMID Version="1">25896322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Feb 18;9(2):e87681</RefSource>
<PMID Version="1">24558372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 Mar 10;267(5203):1445-9</RefSource>
<PMID Version="1">7878463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Physiol. 1995;57:607-34</RefSource>
<PMID Version="1">7778880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2007 Apr;81(8):3693-703</RefSource>
<PMID Version="1">17287280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 1965 Aug;26(4):715-26</RefSource>
<PMID Version="1">5319344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2005 Mar;3(3):238-50</RefSource>
<PMID Version="1">15703760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2015 Jul;37(7):767-76</RefSource>
<PMID Version="1">26010168</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055633" MajorTopicYN="N">Immune System Phenomena</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009093" MajorTopicYN="N">Mucus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014780" MajorTopicYN="N">Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2018</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27983723</ArticleId>
<ArticleId IdType="pii">ismej2016182</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2016.182</ArticleId>
<ArticleId IdType="pmc">PMC5364363</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Quistad, Steven D" sort="Quistad, Steven D" uniqKey="Quistad S" first="Steven D" last="Quistad">Steven D. Quistad</name>
</region>
<name sortKey="Barr, Jeremy J" sort="Barr, Jeremy J" uniqKey="Barr J" first="Jeremy J" last="Barr">Jeremy J. Barr</name>
<name sortKey="Grasis, Juris A" sort="Grasis, Juris A" uniqKey="Grasis J" first="Juris A" last="Grasis">Juris A. Grasis</name>
<name sortKey="Rohwer, Forest L" sort="Rohwer, Forest L" uniqKey="Rohwer F" first="Forest L" last="Rohwer">Forest L. Rohwer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 004043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:27983723
   |texte=   Viruses and the origin of microbiome selection and immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:27983723" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024