Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing drought stress and trait influence on maize yield under current and future conditions.

Identifieur interne : 001464 ( Ncbi/Merge ); précédent : 001463; suivant : 001465

Characterizing drought stress and trait influence on maize yield under current and future conditions.

Auteurs : Matthew T. Harrison [Australie] ; François Tardieu ; Zhanshan Dong ; Carlos D. Messina ; Graeme L. Hammer

Source :

RBID : pubmed:24038882

Descripteurs français

English descriptors

Abstract

Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.

DOI: 10.1111/gcb.12381
PubMed: 24038882

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24038882

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterizing drought stress and trait influence on maize yield under current and future conditions.</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T" last="Harrison">Matthew T. Harrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, Montpellier, 34060, France; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, Montpellier, 34060, France; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072</wicri:regionArea>
<wicri:noRegion>4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D" last="Messina">Carlos D. Messina</name>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L" last="Hammer">Graeme L. Hammer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24038882</idno>
<idno type="pmid">24038882</idno>
<idno type="doi">10.1111/gcb.12381</idno>
<idno type="wicri:Area/PubMed/Corpus">003926</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003926</idno>
<idno type="wicri:Area/PubMed/Curation">003811</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003811</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003811</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003811</idno>
<idno type="wicri:Area/Ncbi/Merge">001464</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterizing drought stress and trait influence on maize yield under current and future conditions.</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T" last="Harrison">Matthew T. Harrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, Montpellier, 34060, France; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, Montpellier, 34060, France; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072</wicri:regionArea>
<wicri:noRegion>4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D" last="Messina">Carlos D. Messina</name>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L" last="Hammer">Graeme L. Hammer</name>
</author>
</analytic>
<series>
<title level="j">Global change biology</title>
<idno type="eISSN">1365-2486</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate Change</term>
<term>Droughts</term>
<term>Europe</term>
<term>Forecasting</term>
<term>Models, Theoretical</term>
<term>Seasons</term>
<term>Stress, Physiological</term>
<term>Zea mays (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Changement climatique</term>
<term>Europe</term>
<term>Modèles théoriques</term>
<term>Prévision</term>
<term>Saisons</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
<term>Zea mays (croissance et développement)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Europe</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Droughts</term>
<term>Forecasting</term>
<term>Models, Theoretical</term>
<term>Seasons</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Changement climatique</term>
<term>Europe</term>
<term>Modèles théoriques</term>
<term>Prévision</term>
<term>Saisons</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24038882</PMID>
<DateCreated>
<Year>2014</Year>
<Month>01</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2486</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology</Title>
<ISOAbbreviation>Glob Chang Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterizing drought stress and trait influence on maize yield under current and future conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>867-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcb.12381</ELocationID>
<Abstract>
<AbstractText>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</AbstractText>
<CopyrightInformation>© 2013 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Matthew T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, Montpellier, 34060, France; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tardieu</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Zhanshan</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Messina</LastName>
<ForeName>Carlos D</ForeName>
<Initials>CD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hammer</LastName>
<ForeName>Graeme L</ForeName>
<Initials>GL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Chang Biol</MedlineTA>
<NlmUniqueID>9888746</NlmUniqueID>
<ISSNLinking>1354-1013</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005544" MajorTopicYN="N">Forecasting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">APSIM</Keyword>
<Keyword MajorTopicYN="N">Zea mays</Keyword>
<Keyword MajorTopicYN="N">breeding</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">grain</Keyword>
<Keyword MajorTopicYN="N">model</Keyword>
<Keyword MajorTopicYN="N">trait</Keyword>
<Keyword MajorTopicYN="N">water stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24038882</ArticleId>
<ArticleId IdType="doi">10.1111/gcb.12381</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L" last="Hammer">Graeme L. Hammer</name>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D" last="Messina">Carlos D. Messina</name>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T" last="Harrison">Matthew T. Harrison</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24038882
   |texte=   Characterizing drought stress and trait influence on maize yield under current and future conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24038882" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024