Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential rotation on both components of the pre‐main‐sequence binary system HD 155555

Identifieur interne : 008849 ( Main/Exploration ); précédent : 008848; suivant : 008850

Differential rotation on both components of the pre‐main‐sequence binary system HD 155555

Auteurs : N. J. Dunstone [Royaume-Uni] ; G. A. J. Hussain [Allemagne] ; A. Collier Cameron ; S. C. Marsden [Australie] ; M. Jardine ; J. R. Barnes ; J. C. Ramirez Velez [France] ; J. Donati [France]

Source :

RBID : ISTEX:FB9C57222BA64A0053C97EB7FEA46A15539C4593

Descripteurs français

English descriptors

Abstract

We present the first measurements of surface differential rotation on a pre‐main‐sequence binary system. Using intensity (Stokes I) and circularly polarized (Stokes V) time‐series spectra, taken over 11 nights at the Anglo‐Australian Telescope (AAT), we incorporate a solar‐like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator–pole lap times as determined from the intensity spectra are 80 d for the primary star and 163 d for the secondary. Similarly, for the magnetic spectra we obtain equator–pole lap times of 44 and 71 d, respectively, showing that the shearing time‐scale of magnetic regions is approximately half of that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral‐type main‐sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this: first that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation and secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.

Url:
DOI: 10.1111/j.1365-2966.2008.13338.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential rotation on both components of the pre‐main‐sequence binary system HD 155555</title>
<author>
<name sortKey="Dunstone, N J" sort="Dunstone, N J" uniqKey="Dunstone N" first="N. J." last="Dunstone">N. J. Dunstone</name>
</author>
<author>
<name sortKey="Hussain, G A J" sort="Hussain, G A J" uniqKey="Hussain G" first="G. A. J." last="Hussain">G. A. J. Hussain</name>
</author>
<author>
<name sortKey="Cameron, A Collier" sort="Cameron, A Collier" uniqKey="Cameron A" first="A. Collier" last="Cameron">A. Collier Cameron</name>
</author>
<author>
<name sortKey="Marsden, S C" sort="Marsden, S C" uniqKey="Marsden S" first="S. C." last="Marsden">S. C. Marsden</name>
</author>
<author>
<name sortKey="Jardine, M" sort="Jardine, M" uniqKey="Jardine M" first="M." last="Jardine">M. Jardine</name>
</author>
<author>
<name sortKey="Barnes, J R" sort="Barnes, J R" uniqKey="Barnes J" first="J. R." last="Barnes">J. R. Barnes</name>
</author>
<author>
<name sortKey="Ramirez Velez, J C" sort="Ramirez Velez, J C" uniqKey="Ramirez Velez J" first="J. C." last="Ramirez Velez">J. C. Ramirez Velez</name>
</author>
<author>
<name sortKey="Donati, J" sort="Donati, J" uniqKey="Donati J" first="J." last="Donati">J. Donati</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FB9C57222BA64A0053C97EB7FEA46A15539C4593</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1111/j.1365-2966.2008.13338.x</idno>
<idno type="url">https://api.istex.fr/document/FB9C57222BA64A0053C97EB7FEA46A15539C4593/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002F49</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002F49</idno>
<idno type="wicri:Area/Istex/Curation">002F49</idno>
<idno type="wicri:Area/Istex/Checkpoint">001216</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001216</idno>
<idno type="wicri:doubleKey">0035-8711:2008:Dunstone N:differential:rotation:on</idno>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E3541683166F62373048A99B00A2B86ABBB93161</idno>
<idno type="url">https://api.istex.fr/document/E3541683166F62373048A99B00A2B86ABBB93161/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002A71</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002A71</idno>
<idno type="wicri:Area/Istex/Curation">002A71</idno>
<idno type="wicri:Area/Istex/Checkpoint">001059</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001059</idno>
<idno type="wicri:doubleKey">0035-8711:2008:Dunstone N:differential:rotation:on</idno>
<idno type="wicri:Area/Main/Merge">009110</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:08-0349538</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003419</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002C30</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003306</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003306</idno>
<idno type="wicri:doubleKey">0035-8711:2008:Dunstone N:differential:rotation:on</idno>
<idno type="wicri:Area/Main/Merge">009720</idno>
<idno type="wicri:Area/Main/Curation">008849</idno>
<idno type="wicri:Area/Main/Exploration">008849</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Differential rotation on both components of the pre‐main‐sequence binary system HD 155555</title>
<author>
<name sortKey="Dunstone, N J" sort="Dunstone, N J" uniqKey="Dunstone N" first="N. J." last="Dunstone">N. J. Dunstone</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Hussain, G A J" sort="Hussain, G A J" uniqKey="Hussain G" first="G. A. J." last="Hussain">G. A. J. Hussain</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>ESO, Karl‐Schwarzschild‐Strasse 2, D‐85748 Garching</wicri:regionArea>
<wicri:noRegion>85748 Garching</wicri:noRegion>
<wicri:noRegion>D‐85748 Garching</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cameron, A Collier" sort="Cameron, A Collier" uniqKey="Cameron A" first="A. Collier" last="Cameron">A. Collier Cameron</name>
<affiliation>
<wicri:noCountry code="subField">9SS</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Marsden, S C" sort="Marsden, S C" uniqKey="Marsden S" first="S. C." last="Marsden">S. C. Marsden</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Anglo‐Australian Observatory, PO Box 296, Epping, NSW 1710</wicri:regionArea>
<wicri:noRegion>NSW 1710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jardine, M" sort="Jardine, M" uniqKey="Jardine M" first="M." last="Jardine">M. Jardine</name>
<affiliation>
<wicri:noCountry code="subField">9SS</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Barnes, J R" sort="Barnes, J R" uniqKey="Barnes J" first="J. R." last="Barnes">J. R. Barnes</name>
<affiliation>
<wicri:noCountry code="subField">9AB</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ramirez Velez, J C" sort="Ramirez Velez, J C" uniqKey="Ramirez Velez J" first="J. C." last="Ramirez Velez">J. C. Ramirez Velez</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>LESIA, Observatoire de Meudon, 92195 Meudon</wicri:regionArea>
<wicri:noRegion>92195 Meudon</wicri:noRegion>
<wicri:noRegion>92195 Meudon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donati, J" sort="Donati, J" uniqKey="Donati J" first="J." last="Donati">J. Donati</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>LATT, CNRS‐UMR 5572, Obs. Midi‐Pyrénées, 14 Av. E. Belin, F‐31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">387</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1525">1525</biblScope>
<biblScope unit="page" to="1536">1536</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-07-11">2008-07-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Age</term>
<term>Binary</term>
<term>Binary orbit</term>
<term>Binary system</term>
<term>Binary systems</term>
<term>Brightness maps</term>
<term>Cameron</term>
<term>Characteristic signature</term>
<term>Circular polarization</term>
<term>Collier</term>
<term>Collier cameron</term>
<term>Complete phase coverage</term>
<term>Convection</term>
<term>Convection zone</term>
<term>Convection zone depth</term>
<term>Convection zone depths</term>
<term>Convection zones</term>
<term>Convective</term>
<term>Convective envelope</term>
<term>Crosscorrelation technique</term>
<term>Data sets</term>
<term>Differential</term>
<term>Differential rotation</term>
<term>Differential rotation curves</term>
<term>Differential rotation measurement</term>
<term>Differential rotation measurements</term>
<term>Differential rotation parameters</term>
<term>Differential rotation rate</term>
<term>Differential rotation rates</term>
<term>Differential rotation strength</term>
<term>Donati</term>
<term>Donati collier cameron</term>
<term>Donati rees</term>
<term>Donati semel</term>
<term>Doppler</term>
<term>Doppler imaging</term>
<term>Doppler imaging process</term>
<term>Dots code</term>
<term>Dunstone</term>
<term>Eld</term>
<term>Equatorial rotation rate</term>
<term>Evolutionary models</term>
<term>Evolutionary stage</term>
<term>Fractional radius</term>
<term>G5iv k0iv</term>
<term>Higher level</term>
<term>Hussain</term>
<term>Image shear</term>
<term>Image shear technique</term>
<term>Imaging</term>
<term>Imaging code</term>
<term>Imaging process</term>
<term>Independent maps</term>
<term>Intensity</term>
<term>Intensity spectra</term>
<term>Internal rotation</term>
<term>Internal structure</term>
<term>Internal velocity</term>
<term>Journal compilation</term>
<term>Large convection zone depths</term>
<term>Last section</term>
<term>Latitude</term>
<term>Latitude strip</term>
<term>Lled circle</term>
<term>Magnetic features</term>
<term>Magnetic fields</term>
<term>Magnetic images</term>
<term>Magnetic maps</term>
<term>Magnetic regions</term>
<term>Magnetic stars</term>
<term>Magnetic structures</term>
<term>Main sequence stars</term>
<term>Many advantages</term>
<term>Maps show</term>
<term>Marks show</term>
<term>Maximum ratio</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Models</term>
<term>Original paper</term>
<term>Physical parameters</term>
<term>Primary side</term>
<term>Primary star</term>
<term>Primary stars</term>
<term>Probability contours</term>
<term>Radiative core</term>
<term>Results show</term>
<term>Rotation</term>
<term>Rotation parameters</term>
<term>Rotation rate</term>
<term>Rotation strength</term>
<term>Rotational period</term>
<term>Second data</term>
<term>Second epoch</term>
<term>Secondary side</term>
<term>Secondary star</term>
<term>Secondary stars</term>
<term>Sheared image technique</term>
<term>Single star</term>
<term>Single stars</term>
<term>Solar rotation</term>
<term>Solid line</term>
<term>Solid triangles</term>
<term>Spectral sequence</term>
<term>Spectral type</term>
<term>Spectroscopic binary stars</term>
<term>Spot features</term>
<term>Spot maps</term>
<term>Star</term>
<term>Starspots</term>
<term>Stellar</term>
<term>Stellar convection zone</term>
<term>Stellar coronae</term>
<term>Stellar latitude</term>
<term>Stellar rotation</term>
<term>Stellar rotations</term>
<term>Stellar surface</term>
<term>Stokes</term>
<term>Strassmeier rice</term>
<term>Surface brightness distribution</term>
<term>Surface maps</term>
<term>Surface rotation parameters</term>
<term>Surface rotation properties</term>
<term>Synchronous rotation</term>
<term>Synchronously</term>
<term>Tidal</term>
<term>Tidal forces</term>
<term>Time series</term>
<term>Upper plot</term>
<term>Variable star</term>
<term>Vertical line</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Age</term>
<term>Binaire spectroscopique</term>
<term>Champ magnétique</term>
<term>Convection</term>
<term>Couronne stellaire</term>
<term>Etoile magnétique</term>
<term>Etoile séquence principale</term>
<term>Force rotation</term>
<term>Intensité</term>
<term>Modèle</term>
<term>Polarisation circulaire</term>
<term>Rotation différentielle</term>
<term>Rotation solaire</term>
<term>Rotation stellaire</term>
<term>Suite spectrale</term>
<term>Série temporelle</term>
<term>Tache stellaire</term>
<term>Type spectral</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Binary</term>
<term>Binary orbit</term>
<term>Binary system</term>
<term>Binary systems</term>
<term>Brightness maps</term>
<term>Cameron</term>
<term>Characteristic signature</term>
<term>Collier</term>
<term>Collier cameron</term>
<term>Complete phase coverage</term>
<term>Convection</term>
<term>Convection zone</term>
<term>Convection zone depth</term>
<term>Convection zone depths</term>
<term>Convection zones</term>
<term>Convective</term>
<term>Convective envelope</term>
<term>Crosscorrelation technique</term>
<term>Data sets</term>
<term>Differential</term>
<term>Differential rotation</term>
<term>Differential rotation curves</term>
<term>Differential rotation measurement</term>
<term>Differential rotation measurements</term>
<term>Differential rotation parameters</term>
<term>Differential rotation rate</term>
<term>Differential rotation rates</term>
<term>Differential rotation strength</term>
<term>Donati</term>
<term>Donati collier cameron</term>
<term>Donati rees</term>
<term>Donati semel</term>
<term>Doppler</term>
<term>Doppler imaging</term>
<term>Doppler imaging process</term>
<term>Dots code</term>
<term>Dunstone</term>
<term>Eld</term>
<term>Equatorial rotation rate</term>
<term>Evolutionary models</term>
<term>Evolutionary stage</term>
<term>Fractional radius</term>
<term>G5iv k0iv</term>
<term>Higher level</term>
<term>Hussain</term>
<term>Image shear</term>
<term>Image shear technique</term>
<term>Imaging</term>
<term>Imaging code</term>
<term>Imaging process</term>
<term>Independent maps</term>
<term>Intensity spectra</term>
<term>Internal rotation</term>
<term>Internal structure</term>
<term>Internal velocity</term>
<term>Journal compilation</term>
<term>Large convection zone depths</term>
<term>Last section</term>
<term>Latitude</term>
<term>Latitude strip</term>
<term>Lled circle</term>
<term>Magnetic features</term>
<term>Magnetic images</term>
<term>Magnetic maps</term>
<term>Magnetic regions</term>
<term>Magnetic structures</term>
<term>Many advantages</term>
<term>Maps show</term>
<term>Marks show</term>
<term>Maximum ratio</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Original paper</term>
<term>Physical parameters</term>
<term>Primary side</term>
<term>Primary star</term>
<term>Primary stars</term>
<term>Probability contours</term>
<term>Radiative core</term>
<term>Results show</term>
<term>Rotation</term>
<term>Rotation parameters</term>
<term>Rotation rate</term>
<term>Rotational period</term>
<term>Second data</term>
<term>Second epoch</term>
<term>Secondary side</term>
<term>Secondary star</term>
<term>Secondary stars</term>
<term>Sheared image technique</term>
<term>Single star</term>
<term>Single stars</term>
<term>Solid line</term>
<term>Solid triangles</term>
<term>Spot features</term>
<term>Spot maps</term>
<term>Star</term>
<term>Stellar</term>
<term>Stellar convection zone</term>
<term>Stellar latitude</term>
<term>Stellar rotations</term>
<term>Stellar surface</term>
<term>Stokes</term>
<term>Strassmeier rice</term>
<term>Surface brightness distribution</term>
<term>Surface maps</term>
<term>Surface rotation parameters</term>
<term>Surface rotation properties</term>
<term>Synchronous rotation</term>
<term>Synchronously</term>
<term>Tidal</term>
<term>Tidal forces</term>
<term>Upper plot</term>
<term>Variable star</term>
<term>Vertical line</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present the first measurements of surface differential rotation on a pre‐main‐sequence binary system. Using intensity (Stokes I) and circularly polarized (Stokes V) time‐series spectra, taken over 11 nights at the Anglo‐Australian Telescope (AAT), we incorporate a solar‐like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator–pole lap times as determined from the intensity spectra are 80 d for the primary star and 163 d for the secondary. Similarly, for the magnetic spectra we obtain equator–pole lap times of 44 and 71 d, respectively, showing that the shearing time‐scale of magnetic regions is approximately half of that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral‐type main‐sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this: first that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation and secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Toulouse</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Barnes, J R" sort="Barnes, J R" uniqKey="Barnes J" first="J. R." last="Barnes">J. R. Barnes</name>
<name sortKey="Cameron, A Collier" sort="Cameron, A Collier" uniqKey="Cameron A" first="A. Collier" last="Cameron">A. Collier Cameron</name>
<name sortKey="Jardine, M" sort="Jardine, M" uniqKey="Jardine M" first="M." last="Jardine">M. Jardine</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Dunstone, N J" sort="Dunstone, N J" uniqKey="Dunstone N" first="N. J." last="Dunstone">N. J. Dunstone</name>
</noRegion>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Hussain, G A J" sort="Hussain, G A J" uniqKey="Hussain G" first="G. A. J." last="Hussain">G. A. J. Hussain</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Marsden, S C" sort="Marsden, S C" uniqKey="Marsden S" first="S. C." last="Marsden">S. C. Marsden</name>
</noRegion>
</country>
<country name="France">
<noRegion>
<name sortKey="Ramirez Velez, J C" sort="Ramirez Velez, J C" uniqKey="Ramirez Velez J" first="J. C." last="Ramirez Velez">J. C. Ramirez Velez</name>
</noRegion>
<name sortKey="Donati, J" sort="Donati, J" uniqKey="Donati J" first="J." last="Donati">J. Donati</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 008849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:FB9C57222BA64A0053C97EB7FEA46A15539C4593
   |texte=   Differential rotation on both components of the pre‐main‐sequence binary system HD 155555
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024