Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A dislocation-based model for all hardening stages in large strain deformation

Identifieur interne : 00C939 ( Main/Exploration ); précédent : 00C938; suivant : 00C940

A dislocation-based model for all hardening stages in large strain deformation

Auteurs : Y. Estrin [Australie] ; L. S. T Th [France] ; A. Molinari [France] ; Y. Bréchet [France]

Source :

RBID : ISTEX:46FC4FD19FD8F7CD06DE73DAEDC5CB309FB45AFC

Descripteurs français

English descriptors

Abstract

Abstract: A new model is presented to describe the hardening behaviour of cell-forming crystalline materials at large strains. Following previous approaches, the model considers a cellular dislocation structure consisting of two phases: the cell walls and the cell interiors. The dislocation density evolution in the two phases is considered in conjunction with a mechanical analysis for the cell structure in torsional deformation in which the cell walls are lying at 45° with respect to the macroscopic shear plane and are strongly elongated in the direction perpendicular to the applied shear direction. Guided by recent results on the volume fraction of cell walls [Müller, Zehetbauer, Borbély and Ungár, Z. Metallk. 1995, 86, 827], the cell-wall volume fraction is considered to decrease as a function of strain. Within a single formulation, all stages of large strain behaviour are correctly reproduced in an application for copper torsion. Moreover, strain rate and temperature effects are accounted for correctly and the predicted dislocation densities are in accord with experimental measurements. It is suggested that the factor responsible for the occurrence of hardening Stages IV and V is a continuous decrease of the volume fraction of the cell walls at large strains. A significant effect of the deformation texture variation on strain hardening is also discussed.

Url:
DOI: 10.1016/S1359-6454(98)00196-7


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A dislocation-based model for all hardening stages in large strain deformation</title>
<author>
<name sortKey="Estrin, Y" sort="Estrin, Y" uniqKey="Estrin Y" first="Y." last="Estrin">Y. Estrin</name>
</author>
<author>
<name sortKey="T Th, L S" sort="T Th, L S" uniqKey="T Th L" first="L. S." last="T Th">L. S. T Th</name>
</author>
<author>
<name sortKey="Molinari, A" sort="Molinari, A" uniqKey="Molinari A" first="A." last="Molinari">A. Molinari</name>
</author>
<author>
<name sortKey="Brechet, Y" sort="Brechet, Y" uniqKey="Brechet Y" first="Y." last="Bréchet">Y. Bréchet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:46FC4FD19FD8F7CD06DE73DAEDC5CB309FB45AFC</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S1359-6454(98)00196-7</idno>
<idno type="url">https://api.istex.fr/document/46FC4FD19FD8F7CD06DE73DAEDC5CB309FB45AFC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D36</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D36</idno>
<idno type="wicri:Area/Istex/Curation">000D36</idno>
<idno type="wicri:Area/Istex/Checkpoint">002298</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002298</idno>
<idno type="wicri:doubleKey">1359-6454:1998:Estrin Y:a:dislocation:based</idno>
<idno type="wicri:Area/Main/Merge">00D976</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:98-0530255</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006564</idno>
<idno type="wicri:Area/PascalFrancis/Curation">006A98</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">006536</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">006536</idno>
<idno type="wicri:doubleKey">1359-6454:1998:Estrin Y:a:dislocation:based</idno>
<idno type="wicri:Area/Main/Merge">00DE23</idno>
<idno type="wicri:Area/Main/Curation">00C939</idno>
<idno type="wicri:Area/Main/Exploration">00C939</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A dislocation-based model for all hardening stages in large strain deformation</title>
<author>
<name sortKey="Estrin, Y" sort="Estrin, Y" uniqKey="Estrin Y" first="Y." last="Estrin">Y. Estrin</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Mechanical and Materials Engineering, The University of Western Australia, Nedlands WA 6907</wicri:regionArea>
<wicri:noRegion>Nedlands WA 6907</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="T Th, L S" sort="T Th, L S" uniqKey="T Th L" first="L. S." last="T Th">L. S. T Th</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique et Mécanique des Matériaux, ISGMP, Université de Metz, Ile du Saulcy, 57045 Metz, Cedex 1</wicri:regionArea>
<orgName type="university">Université Paul Verlaine - Metz</orgName>
<placeName>
<settlement type="city">Metz</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Molinari, A" sort="Molinari, A" uniqKey="Molinari A" first="A." last="Molinari">A. Molinari</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique et Mécanique des Matériaux, ISGMP, Université de Metz, Ile du Saulcy, 57045 Metz, Cedex 1</wicri:regionArea>
<orgName type="university">Université Paul Verlaine - Metz</orgName>
<placeName>
<settlement type="city">Metz</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brechet, Y" sort="Brechet, Y" uniqKey="Brechet Y" first="Y." last="Bréchet">Y. Bréchet</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>LTPCM-INPG, Domaine Universitaire de Grenoble, 38402 Saint Martin d'Hères, Cedex</wicri:regionArea>
<wicri:noRegion>Cedex</wicri:noRegion>
<wicri:noRegion>Cedex</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Acta Materialia</title>
<title level="j" type="abbrev">AM</title>
<idno type="ISSN">1359-6454</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">46</biblScope>
<biblScope unit="issue">15</biblScope>
<biblScope unit="page" from="5509">5509</biblScope>
<biblScope unit="page" to="5522">5522</biblScope>
</imprint>
<idno type="ISSN">1359-6454</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1359-6454</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute temperature</term>
<term>Acta</term>
<term>Acta metall</term>
<term>Acta metallurgica</term>
<term>Arrhenius equation</term>
<term>Average dislocation spacing</term>
<term>Cell interiors</term>
<term>Cell size</term>
<term>Cell structure</term>
<term>Cell wall</term>
<term>Cell walls</term>
<term>Cellular structure</term>
<term>Constant taylor factor</term>
<term>Constant value</term>
<term>Constitutive</term>
<term>Constitutive model</term>
<term>Constitutive relations</term>
<term>Copper torsion</term>
<term>Deformation</term>
<term>Dislocation</term>
<term>Dislocation cell structure</term>
<term>Dislocation densities</term>
<term>Dislocation density</term>
<term>Dislocation density evolution</term>
<term>Dislocation generation</term>
<term>Dislocation structure</term>
<term>Dislocations</term>
<term>Elsevier science</term>
<term>Estrin</term>
<term>Evolution equation</term>
<term>Evolution equations</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Fault energy</term>
<term>Good agreement</term>
<term>Gradual decrease</term>
<term>Haasen</term>
<term>Hardening</term>
<term>High dislocation density</term>
<term>Initial values</term>
<term>Internal stresses</term>
<term>Internal variables</term>
<term>Large strain</term>
<term>Large strain deformation</term>
<term>Large strains</term>
<term>Late stages</term>
<term>Macroscopic</term>
<term>Macroscopic shear stress</term>
<term>Macroscopic stress</term>
<term>Mater</term>
<term>Materials science</term>
<term>Mechanical model</term>
<term>Mechanical properties</term>
<term>Metall</term>
<term>Model predictions</term>
<term>Modelling</term>
<term>Outer surface</term>
<term>Plastic deformation</term>
<term>Plastic flow</term>
<term>Polycrystal</term>
<term>Polycrystal texture simulations</term>
<term>Present model</term>
<term>Present paper</term>
<term>Present work</term>
<term>Principal axes</term>
<term>Pure copper</term>
<term>Room temperature</term>
<term>Shear</term>
<term>Shear direction</term>
<term>Shear plane</term>
<term>Shear rate</term>
<term>Shear strain</term>
<term>Shear strain rate</term>
<term>Shear stress</term>
<term>Shear stresses</term>
<term>Simple shear</term>
<term>Solid line</term>
<term>Strain compatibility</term>
<term>Strain rate</term>
<term>Strain rate tensors</term>
<term>Stress saturation</term>
<term>Stress state</term>
<term>System level</term>
<term>Taylor factor</term>
<term>Taylor factor evolution</term>
<term>Theoretical study</term>
<term>Time interval</term>
<term>Torsion</term>
<term>Torsion deformation</term>
<term>Torsional deformation</term>
<term>Torsional shear rate</term>
<term>Total dislocation density</term>
<term>Ungar</term>
<term>Unit cell</term>
<term>Volume fraction</term>
<term>Western australia</term>
<term>Zehetbauer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6220F</term>
<term>Cisaillement</term>
<term>Densité dislocation</term>
<term>Dislocation</term>
<term>Durcissement</term>
<term>Ecoulement plastique</term>
<term>Etude théorique</term>
<term>Modèle mécanique</term>
<term>Modélisation</term>
<term>Propriété mécanique</term>
<term>Structure cellulaire</term>
<term>Structure dislocation</term>
<term>Vitesse déformation</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute temperature</term>
<term>Acta</term>
<term>Acta metall</term>
<term>Acta metallurgica</term>
<term>Arrhenius equation</term>
<term>Average dislocation spacing</term>
<term>Cell interiors</term>
<term>Cell size</term>
<term>Cell structure</term>
<term>Cell wall</term>
<term>Cell walls</term>
<term>Cellular structure</term>
<term>Constant taylor factor</term>
<term>Constant value</term>
<term>Constitutive</term>
<term>Constitutive model</term>
<term>Constitutive relations</term>
<term>Copper torsion</term>
<term>Deformation</term>
<term>Dislocation</term>
<term>Dislocation cell structure</term>
<term>Dislocation densities</term>
<term>Dislocation density</term>
<term>Dislocation density evolution</term>
<term>Dislocation generation</term>
<term>Dislocation structure</term>
<term>Elsevier science</term>
<term>Estrin</term>
<term>Evolution equation</term>
<term>Evolution equations</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Fault energy</term>
<term>Good agreement</term>
<term>Gradual decrease</term>
<term>Haasen</term>
<term>High dislocation density</term>
<term>Initial values</term>
<term>Internal stresses</term>
<term>Internal variables</term>
<term>Large strain</term>
<term>Large strain deformation</term>
<term>Large strains</term>
<term>Late stages</term>
<term>Macroscopic</term>
<term>Macroscopic shear stress</term>
<term>Macroscopic stress</term>
<term>Mater</term>
<term>Materials science</term>
<term>Metall</term>
<term>Model predictions</term>
<term>Outer surface</term>
<term>Plastic deformation</term>
<term>Polycrystal</term>
<term>Polycrystal texture simulations</term>
<term>Present model</term>
<term>Present paper</term>
<term>Present work</term>
<term>Principal axes</term>
<term>Pure copper</term>
<term>Room temperature</term>
<term>Shear direction</term>
<term>Shear plane</term>
<term>Shear rate</term>
<term>Shear strain</term>
<term>Shear strain rate</term>
<term>Shear stress</term>
<term>Shear stresses</term>
<term>Simple shear</term>
<term>Solid line</term>
<term>Strain compatibility</term>
<term>Strain rate</term>
<term>Strain rate tensors</term>
<term>Stress saturation</term>
<term>Stress state</term>
<term>System level</term>
<term>Taylor factor</term>
<term>Taylor factor evolution</term>
<term>Time interval</term>
<term>Torsion</term>
<term>Torsion deformation</term>
<term>Torsional deformation</term>
<term>Torsional shear rate</term>
<term>Total dislocation density</term>
<term>Ungar</term>
<term>Unit cell</term>
<term>Volume fraction</term>
<term>Western australia</term>
<term>Zehetbauer</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A new model is presented to describe the hardening behaviour of cell-forming crystalline materials at large strains. Following previous approaches, the model considers a cellular dislocation structure consisting of two phases: the cell walls and the cell interiors. The dislocation density evolution in the two phases is considered in conjunction with a mechanical analysis for the cell structure in torsional deformation in which the cell walls are lying at 45° with respect to the macroscopic shear plane and are strongly elongated in the direction perpendicular to the applied shear direction. Guided by recent results on the volume fraction of cell walls [Müller, Zehetbauer, Borbély and Ungár, Z. Metallk. 1995, 86, 827], the cell-wall volume fraction is considered to decrease as a function of strain. Within a single formulation, all stages of large strain behaviour are correctly reproduced in an application for copper torsion. Moreover, strain rate and temperature effects are accounted for correctly and the predicted dislocation densities are in accord with experimental measurements. It is suggested that the factor responsible for the occurrence of hardening Stages IV and V is a continuous decrease of the volume fraction of the cell walls at large strains. A significant effect of the deformation texture variation on strain hardening is also discussed.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Metz</li>
</settlement>
<orgName>
<li>Université Paul Verlaine - Metz</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Estrin, Y" sort="Estrin, Y" uniqKey="Estrin Y" first="Y." last="Estrin">Y. Estrin</name>
</noRegion>
</country>
<country name="France">
<region name="Grand Est">
<name sortKey="T Th, L S" sort="T Th, L S" uniqKey="T Th L" first="L. S." last="T Th">L. S. T Th</name>
</region>
<name sortKey="Brechet, Y" sort="Brechet, Y" uniqKey="Brechet Y" first="Y." last="Bréchet">Y. Bréchet</name>
<name sortKey="Molinari, A" sort="Molinari, A" uniqKey="Molinari A" first="A." last="Molinari">A. Molinari</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C939 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00C939 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:46FC4FD19FD8F7CD06DE73DAEDC5CB309FB45AFC
   |texte=   A dislocation-based model for all hardening stages in large strain deformation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024