Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computational model for the IGF‐II/IGF2r complex that is predictive of mutational and surface plasmon resonance data

Identifieur interne : 009A25 ( Main/Exploration ); précédent : 009A24; suivant : 009A26

Computational model for the IGF‐II/IGF2r complex that is predictive of mutational and surface plasmon resonance data

Auteurs : Philippe Roche [Royaume-Uni, France] ; James Brown [Royaume-Uni] ; Adam Denley [Australie, États-Unis] ; Briony E. Forbes [Australie] ; John C. Wallace [Australie] ; E. Yvonne Jones [Royaume-Uni] ; Robert M. Esnouf [Royaume-Uni]

Source :

RBID : ISTEX:27EF09D8D60BFED4B3EF506117CC740F39008D2D

English descriptors

Abstract

Insulin‐like growth factors (IGFs) are key regulators of cell proliferation, differentiation, and transformation, and are thus pivotal in cancer, especially breast, prostate, and colon neoplasm. Their potent mitogenic and anti‐apoptotic actions depend primarily on their availability to bind to the signaling IGF cell surface receptors. One mechanism by which IGF‐II availability is thought to be modulated is by binding to the nonsignaling IGF‐II receptor (IGF2R). This binding is essentially mediated by domain 11 in the multidomain IGF2R extracellular region. The crystal structure of domain 11 of the human IGF‐II receptor (IGF2R‐d11) has identified a putative IGF‐II binding site, and a nuclear magnetic resonance (NMR) solution structure for the IGF‐II ligand has also been characterized. These structures have now been used to model in silico the protein–protein interaction between IGF‐II and IGF2R‐d11 using the program 3D‐Dock. Because the IGF‐II data comprise an ensemble of 20 structures, all of which satisfy the NMR constraints, the docking procedure was applied to each member of the ensemble. Only those models in which residue Ile1572 of IGF2R‐d11, known to be essential for the binding of IGF‐II, was at the interface were considered further. These plausible complexes were then critically assessed using an array of analysis techniques including consideration of additional mutagenesis data. One model was strongly supported by these analyses and is discussed here in detail. Furthermore, we demonstrate in vitro experimental support for this model by studying the binding of chimeras of IGF‐I and IGF‐II to IGF2R fragments. Proteins 2006. © 2006 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/prot.21035


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computational model for the IGF‐II/IGF2r complex that is predictive of mutational and surface plasmon resonance data</title>
<author>
<name sortKey="Roche, Philippe" sort="Roche, Philippe" uniqKey="Roche P" first="Philippe" last="Roche">Philippe Roche</name>
</author>
<author>
<name sortKey="Brown, James" sort="Brown, James" uniqKey="Brown J" first="James" last="Brown">James Brown</name>
</author>
<author>
<name sortKey="Denley, Adam" sort="Denley, Adam" uniqKey="Denley A" first="Adam" last="Denley">Adam Denley</name>
</author>
<author>
<name sortKey="Forbes, Briony E" sort="Forbes, Briony E" uniqKey="Forbes B" first="Briony E." last="Forbes">Briony E. Forbes</name>
</author>
<author>
<name sortKey="Wallace, John C" sort="Wallace, John C" uniqKey="Wallace J" first="John C." last="Wallace">John C. Wallace</name>
</author>
<author>
<name sortKey="Jones, E Yvonne" sort="Jones, E Yvonne" uniqKey="Jones E" first="E. Yvonne" last="Jones">E. Yvonne Jones</name>
</author>
<author>
<name sortKey="Esnouf, Robert M" sort="Esnouf, Robert M" uniqKey="Esnouf R" first="Robert M." last="Esnouf">Robert M. Esnouf</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:27EF09D8D60BFED4B3EF506117CC740F39008D2D</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/prot.21035</idno>
<idno type="url">https://api.istex.fr/document/27EF09D8D60BFED4B3EF506117CC740F39008D2D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000775</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000775</idno>
<idno type="wicri:Area/Istex/Curation">000775</idno>
<idno type="wicri:Area/Istex/Checkpoint">001678</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001678</idno>
<idno type="wicri:doubleKey">0887-3585:2006:Roche P:computational:model:for</idno>
<idno type="wicri:Area/Main/Merge">00A489</idno>
<idno type="wicri:Area/Main/Curation">009A25</idno>
<idno type="wicri:Area/Main/Exploration">009A25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Computational model for the IGF‐II/IGF2r complex that is predictive of mutational and surface plasmon resonance data</title>
<author>
<name sortKey="Roche, Philippe" sort="Roche, Philippe" uniqKey="Roche P" first="Philippe" last="Roche">Philippe Roche</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
<settlement type="city">Oxford</settlement>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Current Address: BIP‐CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brown, James" sort="Brown, James" uniqKey="Brown J" first="James" last="Brown">James Brown</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
<settlement type="city">Oxford</settlement>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Denley, Adam" sort="Denley, Adam" uniqKey="Denley A" first="Adam" last="Denley">Adam Denley</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Molecular and Biomedical Science, The University of Adelaide, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Current Address: Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Forbes, Briony E" sort="Forbes, Briony E" uniqKey="Forbes B" first="Briony E." last="Forbes">Briony E. Forbes</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Molecular and Biomedical Science, The University of Adelaide, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wallace, John C" sort="Wallace, John C" uniqKey="Wallace J" first="John C." last="Wallace">John C. Wallace</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Molecular and Biomedical Science, The University of Adelaide, Adelaide</wicri:regionArea>
<wicri:noRegion>Adelaide</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jones, E Yvonne" sort="Jones, E Yvonne" uniqKey="Jones E" first="E. Yvonne" last="Jones">E. Yvonne Jones</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
<settlement type="city">Oxford</settlement>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Esnouf, Robert M" sort="Esnouf, Robert M" uniqKey="Esnouf R" first="Robert M." last="Esnouf">Robert M. Esnouf</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
<settlement type="city">Oxford</settlement>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr" wicri:curation="lc">Royaume-Uni</country>
<wicri:regionArea>Correspondence address: Division of Structural Biology, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Proteins: Structure, Function, and Bioinformatics</title>
<title level="j" type="alt">PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS</title>
<idno type="ISSN">0887-3585</idno>
<idno type="eISSN">1097-0134</idno>
<imprint>
<biblScope unit="vol">64</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="758">758</biblScope>
<biblScope unit="page" to="768">768</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-08-15">2006-08-15</date>
</imprint>
<idno type="ISSN">0887-3585</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0887-3585</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accessible surface area</term>
<term>Acta crystallogr</term>
<term>Aliphatic residues</term>
<term>Aromatic residues</term>
<term>Binding</term>
<term>Binding protein interactions</term>
<term>Binding site</term>
<term>Binding sites</term>
<term>Bioinformatics</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Biological data</term>
<term>Black line</term>
<term>Breast cancer</term>
<term>Cancer research</term>
<term>Chem</term>
<term>Complementarity</term>
<term>Complex formation</term>
<term>Constraint</term>
<term>Crystal structure</term>
<term>Different types</term>
<term>Docking</term>
<term>Docking procedure</term>
<term>Docking process</term>
<term>Docking simulations</term>
<term>Electrostatic interactions</term>
<term>Energy minimization</term>
<term>Exible</term>
<term>Exible loop</term>
<term>Experimental evidence</term>
<term>Filter module</term>
<term>Ftdock</term>
<term>Growth factor</term>
<term>Growth factor binding proteins</term>
<term>Growth factors</term>
<term>Human growth factor</term>
<term>Hydrogen bonds</term>
<term>Hydrophobic</term>
<term>Hydrophobic groove</term>
<term>Igf2r</term>
<term>Igf2r binding</term>
<term>Igf2r fragment</term>
<term>Igf2r fragments</term>
<term>Interaction energy</term>
<term>Interface</term>
<term>Kinetic analysis results</term>
<term>Kinetic data</term>
<term>Langmuir binding model</term>
<term>Ltering process</term>
<term>Mannose receptor</term>
<term>Medical research council</term>
<term>Minimization</term>
<term>Model complexes</term>
<term>Multidock</term>
<term>Mutagenesis</term>
<term>National health</term>
<term>Pair potentials</term>
<term>Perl script</term>
<term>Previous analysis</term>
<term>Principal axes</term>
<term>Proc natl acad</term>
<term>Protein data bank</term>
<term>Protein interfaces</term>
<term>Protein surface</term>
<term>Putative</term>
<term>Putative binding site</term>
<term>Putative complexes</term>
<term>Putative interface</term>
<term>Receptor</term>
<term>Residue</term>
<term>Rmsd</term>
<term>Rpscore</term>
<term>Salt bridges</term>
<term>Shape complementarity</term>
<term>Silico</term>
<term>Silico analysis</term>
<term>Solution structure</term>
<term>Solution structures</term>
<term>Steady state model</term>
<term>Structural biology</term>
<term>Supplementary material</term>
<term>Surface area</term>
<term>Surface characteristics</term>
<term>Surface plasmon resonance</term>
<term>Surface plasmon resonance analysis</term>
<term>Unbound</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessible surface area</term>
<term>Acta crystallogr</term>
<term>Aliphatic residues</term>
<term>Aromatic residues</term>
<term>Binding</term>
<term>Binding protein interactions</term>
<term>Binding site</term>
<term>Binding sites</term>
<term>Bioinformatics</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Biological data</term>
<term>Black line</term>
<term>Breast cancer</term>
<term>Cancer research</term>
<term>Chem</term>
<term>Complementarity</term>
<term>Complex formation</term>
<term>Constraint</term>
<term>Crystal structure</term>
<term>Different types</term>
<term>Docking</term>
<term>Docking procedure</term>
<term>Docking process</term>
<term>Docking simulations</term>
<term>Electrostatic interactions</term>
<term>Energy minimization</term>
<term>Exible</term>
<term>Exible loop</term>
<term>Experimental evidence</term>
<term>Filter module</term>
<term>Ftdock</term>
<term>Growth factor</term>
<term>Growth factor binding proteins</term>
<term>Growth factors</term>
<term>Human growth factor</term>
<term>Hydrogen bonds</term>
<term>Hydrophobic</term>
<term>Hydrophobic groove</term>
<term>Igf2r</term>
<term>Igf2r binding</term>
<term>Igf2r fragment</term>
<term>Igf2r fragments</term>
<term>Interaction energy</term>
<term>Interface</term>
<term>Kinetic analysis results</term>
<term>Kinetic data</term>
<term>Langmuir binding model</term>
<term>Ltering process</term>
<term>Mannose receptor</term>
<term>Medical research council</term>
<term>Minimization</term>
<term>Model complexes</term>
<term>Multidock</term>
<term>Mutagenesis</term>
<term>National health</term>
<term>Pair potentials</term>
<term>Perl script</term>
<term>Previous analysis</term>
<term>Principal axes</term>
<term>Proc natl acad</term>
<term>Protein data bank</term>
<term>Protein interfaces</term>
<term>Protein surface</term>
<term>Putative</term>
<term>Putative binding site</term>
<term>Putative complexes</term>
<term>Putative interface</term>
<term>Receptor</term>
<term>Residue</term>
<term>Rmsd</term>
<term>Rpscore</term>
<term>Salt bridges</term>
<term>Shape complementarity</term>
<term>Silico</term>
<term>Silico analysis</term>
<term>Solution structure</term>
<term>Solution structures</term>
<term>Steady state model</term>
<term>Structural biology</term>
<term>Supplementary material</term>
<term>Surface area</term>
<term>Surface characteristics</term>
<term>Surface plasmon resonance</term>
<term>Surface plasmon resonance analysis</term>
<term>Unbound</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Insulin‐like growth factors (IGFs) are key regulators of cell proliferation, differentiation, and transformation, and are thus pivotal in cancer, especially breast, prostate, and colon neoplasm. Their potent mitogenic and anti‐apoptotic actions depend primarily on their availability to bind to the signaling IGF cell surface receptors. One mechanism by which IGF‐II availability is thought to be modulated is by binding to the nonsignaling IGF‐II receptor (IGF2R). This binding is essentially mediated by domain 11 in the multidomain IGF2R extracellular region. The crystal structure of domain 11 of the human IGF‐II receptor (IGF2R‐d11) has identified a putative IGF‐II binding site, and a nuclear magnetic resonance (NMR) solution structure for the IGF‐II ligand has also been characterized. These structures have now been used to model in silico the protein–protein interaction between IGF‐II and IGF2R‐d11 using the program 3D‐Dock. Because the IGF‐II data comprise an ensemble of 20 structures, all of which satisfy the NMR constraints, the docking procedure was applied to each member of the ensemble. Only those models in which residue Ile1572 of IGF2R‐d11, known to be essential for the binding of IGF‐II, was at the interface were considered further. These plausible complexes were then critically assessed using an array of analysis techniques including consideration of additional mutagenesis data. One model was strongly supported by these analyses and is discussed here in detail. Furthermore, we demonstrate in vitro experimental support for this model by studying the binding of chimeras of IGF‐I and IGF‐II to IGF2R fragments. Proteins 2006. © 2006 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Californie</li>
<li>Oxfordshire</li>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Roche, Philippe" sort="Roche, Philippe" uniqKey="Roche P" first="Philippe" last="Roche">Philippe Roche</name>
</region>
<name sortKey="Brown, James" sort="Brown, James" uniqKey="Brown J" first="James" last="Brown">James Brown</name>
<name sortKey="Esnouf, Robert M" sort="Esnouf, Robert M" uniqKey="Esnouf R" first="Robert M." last="Esnouf">Robert M. Esnouf</name>
<name sortKey="Esnouf, Robert M" sort="Esnouf, Robert M" uniqKey="Esnouf R" first="Robert M." last="Esnouf">Robert M. Esnouf</name>
<name sortKey="Esnouf, Robert M" sort="Esnouf, Robert M" uniqKey="Esnouf R" first="Robert M." last="Esnouf">Robert M. Esnouf</name>
<name sortKey="Jones, E Yvonne" sort="Jones, E Yvonne" uniqKey="Jones E" first="E. Yvonne" last="Jones">E. Yvonne Jones</name>
</country>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Roche, Philippe" sort="Roche, Philippe" uniqKey="Roche P" first="Philippe" last="Roche">Philippe Roche</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Denley, Adam" sort="Denley, Adam" uniqKey="Denley A" first="Adam" last="Denley">Adam Denley</name>
</noRegion>
<name sortKey="Forbes, Briony E" sort="Forbes, Briony E" uniqKey="Forbes B" first="Briony E." last="Forbes">Briony E. Forbes</name>
<name sortKey="Wallace, John C" sort="Wallace, John C" uniqKey="Wallace J" first="John C." last="Wallace">John C. Wallace</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Denley, Adam" sort="Denley, Adam" uniqKey="Denley A" first="Adam" last="Denley">Adam Denley</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009A25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 009A25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:27EF09D8D60BFED4B3EF506117CC740F39008D2D
   |texte=   Computational model for the IGF‐II/IGF2r complex that is predictive of mutational and surface plasmon resonance data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024