Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using a digital camera to measure soil organic carbon and iron contents

Identifieur interne : 008939 ( Main/Exploration ); précédent : 008938; suivant : 008940

Using a digital camera to measure soil organic carbon and iron contents

Auteurs : R. A. Viscarra Rossel [France, Australie] ; Y. Fouad [France] ; C. Walter [France]

Source :

RBID : Pascal:08-0314795

Descripteurs français

English descriptors

Abstract

High-resolution digital soil mapping for applications like precision agriculture requires the collection of good-quality high spatial resolution information. Conventional soil analysis is expensive, time consuming and laborious. The development of proximal soil sensors to lessen the need for or to complement conventional soil analysis is important. Although proximal sensing may produce results that are not as accurate as conventional laboratory analysis, they allow for the collection of larger amounts of data using simpler, cheaper and less laborious techniques. This forms the rationale for proximal soil sensing. This article deals with indirect measurements of soil organic carbon (OC) and iron (Fe) contents using soil colour as the proxy. Measurements of soil colour were made using a digital camera. The RGB tristimuli were transformed to variables from other colour space models and a redness index (RI) and these were used to derive pedotransfer functions for soil OC and Fe. Predictions using univariate as well as full factorial regressions (FFR) of these tristimuli were compared to predictions using visible-near infrared (vis-NIR: 400-1100 nm) spectra with partial least squares regression (PLSR) and a reduced number of wavelengths selected using the variable importance for projection (VIP) with PLSR (VIP-PLSR). For predictions of soil OC content, the VIP-PLSR technique produced predictions with R2adj. and RMSE values of 0.91 and 0.46%. These were only very slightly better than predictions by an FFR of the ClELa*b* tristimuli (R2adj. of 0.91 and an RMSE of 0.48%) and PLSR (R(dj. of 0.91 and an RMSE of 0.50%). Predictions using the logarithmic regression of the ClEu* variable were least accurate with R2adj. and RMSE values of 0.88 and 0.56%. For predictions of Fe, an FFR of the CIELC*h* tristimuli produced an R2adj. of 0.71 and an RMSE of 0.068%, which was better than those obtained by PLSR (R(dj. values of 0.64 and RMSE 0.074%) and VIP-PLSR (R2adj. of 0.64 and 0.075%). Predictions of Fe using the logarithmic regression of the RI produced the least accurate results with R2adj. and RMSE values of 0.56 and 0.081%. In this study, we showed that a digital camera can be used for fast, accurate and non-destructive measurements of soil colour and predictions of soil OC and Fe contents in Brittany, France.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Using a digital camera to measure soil organic carbon and iron contents</title>
<author>
<name sortKey="Viscarra Rossel, R A" sort="Viscarra Rossel, R A" uniqKey="Viscarra Rossel R" first="R. A." last="Viscarra Rossel">R. A. Viscarra Rossel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
<wicri:noRegion>65 rue de St Brieuc</wicri:noRegion>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Australian Centre for Precision Agriculture, Faculty of Agriculture, Food & Natural Resources, McMillan Building A05, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CSIRO Land & Water, Bruce E. Butler Laboratory, GPO Box 1666</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fouad, Y" sort="Fouad, Y" uniqKey="Fouad Y" first="Y." last="Fouad">Y. Fouad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
<wicri:noRegion>65 rue de St Brieuc</wicri:noRegion>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walter, C" sort="Walter, C" uniqKey="Walter C" first="C." last="Walter">C. Walter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
<wicri:noRegion>65 rue de St Brieuc</wicri:noRegion>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0314795</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0314795 INIST</idno>
<idno type="RBID">Pascal:08-0314795</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003460</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002B89</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">002D92</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">002D92</idno>
<idno type="wicri:doubleKey">1537-5110:2008:Viscarra Rossel R:using:a:digital</idno>
<idno type="wicri:Area/Main/Merge">009206</idno>
<idno type="wicri:Area/Main/Curation">008939</idno>
<idno type="wicri:Area/Main/Exploration">008939</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Using a digital camera to measure soil organic carbon and iron contents</title>
<author>
<name sortKey="Viscarra Rossel, R A" sort="Viscarra Rossel, R A" uniqKey="Viscarra Rossel R" first="R. A." last="Viscarra Rossel">R. A. Viscarra Rossel</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Australian Centre for Precision Agriculture, Faculty of Agriculture, Food & Natural Resources, McMillan Building A05, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CSIRO Land & Water, Bruce E. Butler Laboratory, GPO Box 1666</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fouad, Y" sort="Fouad, Y" uniqKey="Fouad Y" first="Y." last="Fouad">Y. Fouad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
<wicri:noRegion>65 rue de St Brieuc</wicri:noRegion>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walter, C" sort="Walter, C" uniqKey="Walter C" first="C." last="Walter">C. Walter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UMR SAS INRA-Agrocampus Rennes, 65 rue de St Brieuc</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
<wicri:noRegion>65 rue de St Brieuc</wicri:noRegion>
<wicri:noRegion>35042 Rennes</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Biosystems engineering</title>
<title level="j" type="abbreviated">Biosyst. eng.</title>
<idno type="ISSN">1537-5110</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Biosystems engineering</title>
<title level="j" type="abbreviated">Biosyst. eng.</title>
<idno type="ISSN">1537-5110</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture</term>
<term>Bioengineering</term>
<term>Content</term>
<term>Digital photography</term>
<term>Engineering</term>
<term>Iron</term>
<term>Organic carbon</term>
<term>Soils</term>
<term>Use</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Utilisation</term>
<term>Photographie numérique</term>
<term>Teneur</term>
<term>Agriculture</term>
<term>Ingénierie</term>
<term>Carbone organique</term>
<term>Fer</term>
<term>Sol</term>
<term>Génie biologique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-resolution digital soil mapping for applications like precision agriculture requires the collection of good-quality high spatial resolution information. Conventional soil analysis is expensive, time consuming and laborious. The development of proximal soil sensors to lessen the need for or to complement conventional soil analysis is important. Although proximal sensing may produce results that are not as accurate as conventional laboratory analysis, they allow for the collection of larger amounts of data using simpler, cheaper and less laborious techniques. This forms the rationale for proximal soil sensing. This article deals with indirect measurements of soil organic carbon (OC) and iron (Fe) contents using soil colour as the proxy. Measurements of soil colour were made using a digital camera. The RGB tristimuli were transformed to variables from other colour space models and a redness index (RI) and these were used to derive pedotransfer functions for soil OC and Fe. Predictions using univariate as well as full factorial regressions (FFR) of these tristimuli were compared to predictions using visible-near infrared (vis-NIR: 400-1100 nm) spectra with partial least squares regression (PLSR) and a reduced number of wavelengths selected using the variable importance for projection (VIP) with PLSR (VIP-PLSR). For predictions of soil OC content, the VIP-PLSR technique produced predictions with R
<sup>2</sup>
<sub>adj.</sub>
and RMSE values of 0.91 and 0.46%. These were only very slightly better than predictions by an FFR of the ClELa*b* tristimuli (R
<sup>2</sup>
<sub>adj</sub>
. of 0.91 and an RMSE of 0.48%) and PLSR (R(dj. of 0.91 and an RMSE of 0.50%). Predictions using the logarithmic regression of the ClEu* variable were least accurate with R
<sup>2</sup>
<sub>adj.</sub>
and RMSE values of 0.88 and 0.56%. For predictions of Fe, an FFR of the CIELC*h* tristimuli produced an R
<sup>2</sup>
<sub>adj.</sub>
of 0.71 and an RMSE of 0.068%, which was better than those obtained by PLSR (R(
<sub>d</sub>
j
<sub>.</sub>
values of 0.64 and RMSE 0.074%) and VIP-PLSR (R
<sup>2</sup>
<sub>adj.</sub>
of 0.64 and 0.075%). Predictions of Fe using the logarithmic regression of the RI produced the least accurate results with R
<sup>2</sup>
<sub>adj.</sub>
and RMSE values of 0.56 and 0.081%. In this study, we showed that a digital camera can be used for fast, accurate and non-destructive measurements of soil colour and predictions of soil OC and Fe contents in Brittany, France.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Rennes</li>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Viscarra Rossel, R A" sort="Viscarra Rossel, R A" uniqKey="Viscarra Rossel R" first="R. A." last="Viscarra Rossel">R. A. Viscarra Rossel</name>
</region>
<name sortKey="Fouad, Y" sort="Fouad, Y" uniqKey="Fouad Y" first="Y." last="Fouad">Y. Fouad</name>
<name sortKey="Walter, C" sort="Walter, C" uniqKey="Walter C" first="C." last="Walter">C. Walter</name>
</country>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Viscarra Rossel, R A" sort="Viscarra Rossel, R A" uniqKey="Viscarra Rossel R" first="R. A." last="Viscarra Rossel">R. A. Viscarra Rossel</name>
</region>
<name sortKey="Viscarra Rossel, R A" sort="Viscarra Rossel, R A" uniqKey="Viscarra Rossel R" first="R. A." last="Viscarra Rossel">R. A. Viscarra Rossel</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008939 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 008939 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:08-0314795
   |texte=   Using a digital camera to measure soil organic carbon and iron contents
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024