Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo brain viscoelastic properties measured by magnetic resonance elastography

Identifieur interne : 008798 ( Main/Exploration ); précédent : 008797; suivant : 008799

In vivo brain viscoelastic properties measured by magnetic resonance elastography

Auteurs : Michael A. Green [Australie] ; Lynne E. Bilston [Australie] ; Ralph Sinkus [France]

Source :

RBID : ISTEX:6E168940239E9103606010FB30C99C5E3C6C2522

Descripteurs français

English descriptors

Abstract

Magnetic resonance elastography (MRE) is a non‐invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three‐dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. A calibrated phantom is used to benchmark the MRE measurements, and in vivo results are presented for healthy volunteers. The results provide data for in vivo brain storage modulus (G′), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G″) measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa). Copyright © 2008 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1254


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo brain viscoelastic properties measured by magnetic resonance elastography</title>
<author>
<name sortKey="Green, Michael A" sort="Green, Michael A" uniqKey="Green M" first="Michael A." last="Green">Michael A. Green</name>
</author>
<author>
<name sortKey="Bilston, Lynne E" sort="Bilston, Lynne E" uniqKey="Bilston L" first="Lynne E." last="Bilston">Lynne E. Bilston</name>
</author>
<author>
<name sortKey="Sinkus, Ralph" sort="Sinkus, Ralph" uniqKey="Sinkus R" first="Ralph" last="Sinkus">Ralph Sinkus</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6E168940239E9103606010FB30C99C5E3C6C2522</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/nbm.1254</idno>
<idno type="url">https://api.istex.fr/document/6E168940239E9103606010FB30C99C5E3C6C2522/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001465</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001465</idno>
<idno type="wicri:Area/Istex/Curation">001465</idno>
<idno type="wicri:Area/Istex/Checkpoint">001165</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001165</idno>
<idno type="wicri:doubleKey">0952-3480:2008:Green M:in:vivo:brain</idno>
<idno type="wicri:Area/Main/Merge">009059</idno>
<idno type="wicri:Area/Main/Curation">008798</idno>
<idno type="wicri:Area/Main/Exploration">008798</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">
<hi rend="italic">In vivo</hi>
brain viscoelastic properties measured by magnetic resonance elastography</title>
<author>
<name sortKey="Green, Michael A" sort="Green, Michael A" uniqKey="Green M" first="Michael A." last="Green">Michael A. Green</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Prince of Wales Medical Research Institute, UNSW, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Correspondence address: Prince of Wales Medical Research Institute, Barker St, Randwick, NSW 2031</wicri:regionArea>
<wicri:noRegion>NSW 2031</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bilston, Lynne E" sort="Bilston, Lynne E" uniqKey="Bilston L" first="Lynne E." last="Bilston">Lynne E. Bilston</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Prince of Wales Medical Research Institute, UNSW, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sinkus, Ralph" sort="Sinkus, Ralph" uniqKey="Sinkus R" first="Ralph" last="Sinkus">Ralph Sinkus</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Ondes et Acoustique, ESPCI, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">21</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="755">755</biblScope>
<biblScope unit="page" to="764">764</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2008-08">2008-08</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta radiol</term>
<term>Amplitude</term>
<term>Arbitrary time point</term>
<term>Axial plane</term>
<term>Biomed</term>
<term>Brain diseases</term>
<term>Brain matter</term>
<term>Brain tissue</term>
<term>Central region</term>
<term>Centre</term>
<term>Complex shear modulus</term>
<term>Copyright</term>
<term>Dilatational</term>
<term>Dilatational wave</term>
<term>Dilatational wave contributions</term>
<term>Dilatational waves</term>
<term>Ehman</term>
<term>Elasticity</term>
<term>Elasticity values</term>
<term>Elastography</term>
<term>Example image</term>
<term>Excitation</term>
<term>Excitation frequency</term>
<term>Frequency space</term>
<term>Further investigations</term>
<term>Grey matter</term>
<term>Harmonic oscillator simulations</term>
<term>Healthy volunteers</term>
<term>Higher frequencies</term>
<term>Horizontal line</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Inclusion</term>
<term>John wiley sons</term>
<term>Loss modulus</term>
<term>Ltering method</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance elastography</term>
<term>Magnitude image</term>
<term>Matter brain tissue</term>
<term>Mechanical properties</term>
<term>Mechanical transducer</term>
<term>Modulus</term>
<term>Phantom</term>
<term>Pixel</term>
<term>Preliminary results</term>
<term>Present data</term>
<term>Pressure term</term>
<term>Previous studies</term>
<term>Radial position</term>
<term>Reconstruction method</term>
<term>Reconstruction technique</term>
<term>Research institute</term>
<term>Reson</term>
<term>Resonance elastography</term>
<term>Rheometry</term>
<term>Rheometry measurements</term>
<term>Right hand side</term>
<term>Scan resolution</term>
<term>Shear elasticity</term>
<term>Shear viscosity</term>
<term>Shear waves</term>
<term>Skeletal muscle</term>
<term>Small magnitude</term>
<term>Smallest wavelengths</term>
<term>Spatial direction</term>
<term>Spatial directions</term>
<term>Square root</term>
<term>Standard deviations</term>
<term>Stiffer inclusions</term>
<term>Storage modulus</term>
<term>Strain waves</term>
<term>Test subject</term>
<term>Tissue properties</term>
<term>Total amplitude</term>
<term>Viscoelastic</term>
<term>Viscoelastic parameters</term>
<term>Viscoelastic properties</term>
<term>Viscous properties</term>
<term>Vivo</term>
<term>Vivo brain</term>
<term>Vivo measurements</term>
<term>Wave amplitude</term>
<term>White matter</term>
<term>White matter elasticity</term>
<term>White matter regions</term>
<term>White matter values</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta radiol</term>
<term>Amplitude</term>
<term>Arbitrary time point</term>
<term>Axial plane</term>
<term>Biomed</term>
<term>Brain diseases</term>
<term>Brain matter</term>
<term>Brain tissue</term>
<term>Central region</term>
<term>Centre</term>
<term>Complex shear modulus</term>
<term>Copyright</term>
<term>Dilatational</term>
<term>Dilatational wave</term>
<term>Dilatational wave contributions</term>
<term>Dilatational waves</term>
<term>Ehman</term>
<term>Elasticity</term>
<term>Elasticity values</term>
<term>Elastography</term>
<term>Example image</term>
<term>Excitation</term>
<term>Excitation frequency</term>
<term>Frequency space</term>
<term>Further investigations</term>
<term>Grey matter</term>
<term>Harmonic oscillator simulations</term>
<term>Healthy volunteers</term>
<term>Higher frequencies</term>
<term>Horizontal line</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Inclusion</term>
<term>John wiley sons</term>
<term>Loss modulus</term>
<term>Ltering method</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance elastography</term>
<term>Magnitude image</term>
<term>Matter brain tissue</term>
<term>Mechanical properties</term>
<term>Mechanical transducer</term>
<term>Modulus</term>
<term>Phantom</term>
<term>Pixel</term>
<term>Preliminary results</term>
<term>Present data</term>
<term>Pressure term</term>
<term>Previous studies</term>
<term>Radial position</term>
<term>Reconstruction method</term>
<term>Reconstruction technique</term>
<term>Research institute</term>
<term>Reson</term>
<term>Resonance elastography</term>
<term>Rheometry</term>
<term>Rheometry measurements</term>
<term>Right hand side</term>
<term>Scan resolution</term>
<term>Shear elasticity</term>
<term>Shear viscosity</term>
<term>Shear waves</term>
<term>Skeletal muscle</term>
<term>Small magnitude</term>
<term>Smallest wavelengths</term>
<term>Spatial direction</term>
<term>Spatial directions</term>
<term>Square root</term>
<term>Standard deviations</term>
<term>Stiffer inclusions</term>
<term>Storage modulus</term>
<term>Strain waves</term>
<term>Test subject</term>
<term>Tissue properties</term>
<term>Total amplitude</term>
<term>Viscoelastic</term>
<term>Viscoelastic parameters</term>
<term>Viscoelastic properties</term>
<term>Viscous properties</term>
<term>Vivo</term>
<term>Vivo brain</term>
<term>Vivo measurements</term>
<term>Wave amplitude</term>
<term>White matter</term>
<term>White matter elasticity</term>
<term>White matter regions</term>
<term>White matter values</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Magnetic resonance elastography (MRE) is a non‐invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three‐dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. A calibrated phantom is used to benchmark the MRE measurements, and in vivo results are presented for healthy volunteers. The results provide data for in vivo brain storage modulus (G′), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G″) measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa). Copyright © 2008 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Sydney</li>
</settlement>
</list>
<tree>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Green, Michael A" sort="Green, Michael A" uniqKey="Green M" first="Michael A." last="Green">Michael A. Green</name>
</region>
<name sortKey="Bilston, Lynne E" sort="Bilston, Lynne E" uniqKey="Bilston L" first="Lynne E." last="Bilston">Lynne E. Bilston</name>
<name sortKey="Green, Michael A" sort="Green, Michael A" uniqKey="Green M" first="Michael A." last="Green">Michael A. Green</name>
<name sortKey="Green, Michael A" sort="Green, Michael A" uniqKey="Green M" first="Michael A." last="Green">Michael A. Green</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Sinkus, Ralph" sort="Sinkus, Ralph" uniqKey="Sinkus R" first="Ralph" last="Sinkus">Ralph Sinkus</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008798 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 008798 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:6E168940239E9103606010FB30C99C5E3C6C2522
   |texte=   In vivo brain viscoelastic properties measured by magnetic resonance elastography
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024