Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon

Identifieur interne : 007E40 ( Main/Exploration ); précédent : 007E39; suivant : 007E41

Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon

Auteurs : J. S. Williams [Australie] ; G. De M. Azevedo [Australie] ; H. Bernas [France] ; F. Fortuna [France]

Source :

RBID : ISTEX:05D6E80D130FC95EEAF2195B95F047211C3C55B6

Descripteurs français

English descriptors

Abstract

Abstract: Ion-induced collisions produce athermal atomic movements at and around the surface or interface, inducing step formation and modifying growth conditions. The latter may be controlled by varying the temperature and ion-beam characteristics, guiding the system between nonequilibrium and quasiequilibrium states. Silicon is an ideal material to observe and understand such processes. For ion irradiation at or below room temperature, damage due to collision cascades leads to Si amorphization. At temperatures where defects are mobile and interact, irradiation can lead to layer-by-layer amorphization, whereas at higher temperatures irradiation can lead to the recrystallization of previously amorphized layers. This chapter focuses on the role of ion beams in the interface evolution. We first give an overview of ion beam-induced epitaxial crystallization (IBIEC) and ion-beam-induced amorphization as observed in silicon and identify unresolved issues. Similarities and differences with more familiar surface thermal growth processes are emphasized. Theories and computer simulations developed for surface relaxation help us to quantify several important aspects of IBIEC. Recent experiments provide insight into the influence of ion-induced defect interactions on IBIEC, and are also partly interpreted via computer simulations. The case of phase transformations and precipitation at interfaces is also considered.

Url:
DOI: 10.1007/978-3-540-88789-8_4


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon</title>
<author>
<name sortKey="Williams, J S" sort="Williams, J S" uniqKey="Williams J" first="J. S." last="Williams">J. S. Williams</name>
</author>
<author>
<name sortKey="De M Azevedo, G" sort="De M Azevedo, G" uniqKey="De M Azevedo G" first="G." last="De M. Azevedo">G. De M. Azevedo</name>
</author>
<author>
<name sortKey="Bernas, H" sort="Bernas, H" uniqKey="Bernas H" first="H." last="Bernas">H. Bernas</name>
</author>
<author>
<name sortKey="Fortuna, F" sort="Fortuna, F" uniqKey="Fortuna F" first="F." last="Fortuna">F. Fortuna</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:05D6E80D130FC95EEAF2195B95F047211C3C55B6</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1007/978-3-540-88789-8_4</idno>
<idno type="url">https://api.istex.fr/document/05D6E80D130FC95EEAF2195B95F047211C3C55B6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000107</idno>
<idno type="wicri:Area/Istex/Curation">000107</idno>
<idno type="wicri:Area/Istex/Checkpoint">000E77</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000E77</idno>
<idno type="wicri:doubleKey">0303-4216:2009:Williams J:ion:beam:induced</idno>
<idno type="wicri:Area/Main/Merge">008535</idno>
<idno type="wicri:Area/Main/Curation">007E40</idno>
<idno type="wicri:Area/Main/Exploration">007E40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon</title>
<author>
<name sortKey="Williams, J S" sort="Williams, J S" uniqKey="Williams J" first="J. S." last="Williams">J. S. Williams</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Physical Sciences and Engineering, Australian National University, 0200, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="De M Azevedo, G" sort="De M Azevedo, G" uniqKey="De M Azevedo G" first="G." last="De M. Azevedo">G. De M. Azevedo</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Physical Sciences and Engineering, Australian National University, 0200, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernas, H" sort="Bernas, H" uniqKey="Bernas H" first="H." last="Bernas">H. Bernas</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>CSNSM-CNRS, University Paris-Sud 11, 91405, Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fortuna, F" sort="Fortuna, F" uniqKey="Fortuna F" first="F." last="Fortuna">F. Fortuna</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>CSNSM-CNRS, University Paris-Sud 11, 91405, Orsay</wicri:regionArea>
<wicri:noRegion>91405, Orsay</wicri:noRegion>
<wicri:noRegion>Orsay</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s">Topics in Applied Physics</title>
<imprint>
<date>2010</date>
</imprint>
<idno type="ISSN">0303-4216</idno>
<idno type="ISSN">0303-4216</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0303-4216</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Amorphization</term>
<term>Amorphous</term>
<term>Amorphous layer</term>
<term>Amorphous layers</term>
<term>Amorphous phase</term>
<term>Amorphous region</term>
<term>Amorphous silicon</term>
<term>Annealing</term>
<term>Appl</term>
<term>Atomic displacements</term>
<term>Bernas</term>
<term>Cascade</term>
<term>Cascade density</term>
<term>Computer simulations</term>
<term>Crystalline</term>
<term>Crystalline region</term>
<term>Crystalline side</term>
<term>Crystalline silicon</term>
<term>Crystallization</term>
<term>Defect</term>
<term>Defect accumulation</term>
<term>Defect annihilation</term>
<term>Defect clusters</term>
<term>Defect generation</term>
<term>Defect interactions</term>
<term>Deposition</term>
<term>Dynamic annealing</term>
<term>Elliman</term>
<term>Epitaxial</term>
<term>Epitaxial crystallization</term>
<term>Epitaxial growth</term>
<term>Exponent</term>
<term>Free energy</term>
<term>Front interface</term>
<term>Growth rate</term>
<term>Growth speed</term>
<term>Ibiec</term>
<term>Ibiec growth</term>
<term>Ibiec growth rate</term>
<term>Ibiec observations</term>
<term>Ibiec process</term>
<term>Ibiec rate</term>
<term>Ibiec rates</term>
<term>Ibiec regrowth</term>
<term>Implant</term>
<term>Implantation</term>
<term>Implantation temperature</term>
<term>Instrum</term>
<term>Interface</term>
<term>Interface evolution</term>
<term>Interface motion</term>
<term>Interface roughness</term>
<term>Interfacial energy</term>
<term>Interfacial growth</term>
<term>Irradiation conditions</term>
<term>Irradiation temperature</term>
<term>Kink</term>
<term>Kinomura</term>
<term>Lattice</term>
<term>Layer</term>
<term>Lett</term>
<term>Linnros</term>
<term>Major role</term>
<term>Marlowe calculations</term>
<term>Mater</term>
<term>Methods phys</term>
<term>Mobile defects</term>
<term>Monte carlo simulations</term>
<term>Nucl</term>
<term>Nucleation</term>
<term>Phys</term>
<term>Point defects</term>
<term>Precipitation</term>
<term>Preferential amorphization</term>
<term>Priolo</term>
<term>Proc</term>
<term>Random irradiations</term>
<term>Regrowth</term>
<term>Rimini</term>
<term>Room temperature</term>
<term>Roughness</term>
<term>Silicon</term>
<term>Simulation</term>
<term>Solid line</term>
<term>Speg</term>
<term>Such processes</term>
<term>Surface growth</term>
<term>Surface relaxation</term>
<term>Symp</term>
<term>Temperature dependence</term>
<term>Xtem</term>
<term>Xtem images</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activation energy</term>
<term>Amorphization</term>
<term>Amorphous</term>
<term>Amorphous layer</term>
<term>Amorphous layers</term>
<term>Amorphous phase</term>
<term>Amorphous region</term>
<term>Amorphous silicon</term>
<term>Annealing</term>
<term>Appl</term>
<term>Atomic displacements</term>
<term>Bernas</term>
<term>Cascade</term>
<term>Cascade density</term>
<term>Computer simulations</term>
<term>Crystalline</term>
<term>Crystalline region</term>
<term>Crystalline side</term>
<term>Crystalline silicon</term>
<term>Crystallization</term>
<term>Defect</term>
<term>Defect accumulation</term>
<term>Defect annihilation</term>
<term>Defect clusters</term>
<term>Defect generation</term>
<term>Defect interactions</term>
<term>Deposition</term>
<term>Dynamic annealing</term>
<term>Elliman</term>
<term>Epitaxial</term>
<term>Epitaxial crystallization</term>
<term>Epitaxial growth</term>
<term>Exponent</term>
<term>Free energy</term>
<term>Front interface</term>
<term>Growth rate</term>
<term>Growth speed</term>
<term>Ibiec</term>
<term>Ibiec growth</term>
<term>Ibiec growth rate</term>
<term>Ibiec observations</term>
<term>Ibiec process</term>
<term>Ibiec rate</term>
<term>Ibiec rates</term>
<term>Ibiec regrowth</term>
<term>Implant</term>
<term>Implantation</term>
<term>Implantation temperature</term>
<term>Instrum</term>
<term>Interface</term>
<term>Interface evolution</term>
<term>Interface motion</term>
<term>Interface roughness</term>
<term>Interfacial energy</term>
<term>Interfacial growth</term>
<term>Irradiation conditions</term>
<term>Irradiation temperature</term>
<term>Kink</term>
<term>Kinomura</term>
<term>Lattice</term>
<term>Layer</term>
<term>Lett</term>
<term>Linnros</term>
<term>Major role</term>
<term>Marlowe calculations</term>
<term>Mater</term>
<term>Methods phys</term>
<term>Mobile defects</term>
<term>Monte carlo simulations</term>
<term>Nucl</term>
<term>Nucleation</term>
<term>Phys</term>
<term>Point defects</term>
<term>Precipitation</term>
<term>Preferential amorphization</term>
<term>Priolo</term>
<term>Proc</term>
<term>Random irradiations</term>
<term>Regrowth</term>
<term>Rimini</term>
<term>Room temperature</term>
<term>Roughness</term>
<term>Silicon</term>
<term>Simulation</term>
<term>Solid line</term>
<term>Speg</term>
<term>Such processes</term>
<term>Surface growth</term>
<term>Surface relaxation</term>
<term>Symp</term>
<term>Temperature dependence</term>
<term>Xtem</term>
<term>Xtem images</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Ion-induced collisions produce athermal atomic movements at and around the surface or interface, inducing step formation and modifying growth conditions. The latter may be controlled by varying the temperature and ion-beam characteristics, guiding the system between nonequilibrium and quasiequilibrium states. Silicon is an ideal material to observe and understand such processes. For ion irradiation at or below room temperature, damage due to collision cascades leads to Si amorphization. At temperatures where defects are mobile and interact, irradiation can lead to layer-by-layer amorphization, whereas at higher temperatures irradiation can lead to the recrystallization of previously amorphized layers. This chapter focuses on the role of ion beams in the interface evolution. We first give an overview of ion beam-induced epitaxial crystallization (IBIEC) and ion-beam-induced amorphization as observed in silicon and identify unresolved issues. Similarities and differences with more familiar surface thermal growth processes are emphasized. Theories and computer simulations developed for surface relaxation help us to quantify several important aspects of IBIEC. Recent experiments provide insight into the influence of ion-induced defect interactions on IBIEC, and are also partly interpreted via computer simulations. The case of phase transformations and precipitation at interfaces is also considered.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Orsay</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Williams, J S" sort="Williams, J S" uniqKey="Williams J" first="J. S." last="Williams">J. S. Williams</name>
</noRegion>
<name sortKey="De M Azevedo, G" sort="De M Azevedo, G" uniqKey="De M Azevedo G" first="G." last="De M. Azevedo">G. De M. Azevedo</name>
<name sortKey="Williams, J S" sort="Williams, J S" uniqKey="Williams J" first="J. S." last="Williams">J. S. Williams</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Bernas, H" sort="Bernas, H" uniqKey="Bernas H" first="H." last="Bernas">H. Bernas</name>
</region>
<name sortKey="Fortuna, F" sort="Fortuna, F" uniqKey="Fortuna F" first="F." last="Fortuna">F. Fortuna</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007E40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 007E40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:05D6E80D130FC95EEAF2195B95F047211C3C55B6
   |texte=   Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024