Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detection of 21‐cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152

Identifieur interne : 007310 ( Main/Exploration ); précédent : 007309; suivant : 007311

Detection of 21‐cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152

Auteurs : R. Srianand [Inde] ; N. Gupta [Australie] ; P. Petitjean [France] ; P. Noterdaeme [Inde] ; C. Ledoux [Chili]

Source :

RBID : ISTEX:0CA9F33E9EC7BAC8FB08A408EFC6BB7702973D1C

Descripteurs français

English descriptors

Abstract

We report the detection of 21‐cm and molecular hydrogen absorption lines in the same damped Lyman α system (DLA; with log N(H i) = 21.36 ± 0.10) at zabs= 3.17447 towards SDSS J133724.69+315254.55 (zem∼ 3.174). We estimate the spin temperature of the gas to be TS= 600+222−159 K, intermediate between the expected values for cold and warm neutral media. This suggests that the H i absorption originates from a mixture of different phases. The total molecular fraction is low, , and H2 rotational level populations are not in equilibrium. The average abundance of the α‐elements is [S/H]=−1.45 ± 0.22. Nitrogen and iron are found underabundant with respect to α‐elements by ∼1.0 and ∼0.5 dex, respectively. Using photoionization models we conclude that the gas, of mean density nH∼ 2  cm−3, is located more than 270 kpc away from the quasi‐stellar object. While the position of the 21‐cm absorption line coincides with the H2 velocity profile, its centroid is shifted by ∼ 2.7 ± 1.0  km s −1 with respect to the redshift measured from the H2 lines. However, the position of the strongest metal absorption component matches the position of the 21‐cm absorption line within 0.5 km s−1. From this, we constrain the variation of the combination of fundamental constants x=α2 Gp/μ,  Δx/x=− (1.7 ± 1.7) × 10−6. This system is unique as we can at the same time have an independent constraint on μ using H2 lines. However, as the H2 column density is low, only Werner band absorption lines are seen and, unfortunately, the range of sensitivity coefficients is too narrow to provide a stringent constraint: Δμ/μ≤ 4.0 × 10−4. The Ultraviolet and Visual Echelle Spectrograph spectrum reveals another DLA at zabs= 3.16768 with log N(H i) = 20.41 ± 0.15 and low metallicity, [Si/H]=−2.68 ± 0.11, in which [O/C]∼0.18 ± 0.18 and [O/Si]∼ 0. This shows that even in the very early stages of chemical evolution, the carbon or silicon to oxygen ratios can be close to solar. Using Voigt profile fitting we derive log(N(D i)/N(H i)) =−(4.93 ± 0.15) in this system. This is a factor of 2 smaller than the value expected from the best‐fitting value of Ωb from the Wilkinson Microwave Anisotropy Probe 5‐yr data. This confirms the presence of astration of deuterium even at very low metallicity.

Url:
DOI: 10.1111/j.1365-2966.2010.16574.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detection of 21‐cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152</title>
<author>
<name sortKey="Srianand, R" sort="Srianand, R" uniqKey="Srianand R" first="R." last="Srianand">R. Srianand</name>
</author>
<author>
<name sortKey="Gupta, N" sort="Gupta, N" uniqKey="Gupta N" first="N." last="Gupta">N. Gupta</name>
</author>
<author>
<name sortKey="Petitjean, P" sort="Petitjean, P" uniqKey="Petitjean P" first="P." last="Petitjean">P. Petitjean</name>
</author>
<author>
<name sortKey="Noterdaeme, P" sort="Noterdaeme, P" uniqKey="Noterdaeme P" first="P." last="Noterdaeme">P. Noterdaeme</name>
</author>
<author>
<name sortKey="Ledoux, C" sort="Ledoux, C" uniqKey="Ledoux C" first="C." last="Ledoux">C. Ledoux</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0CA9F33E9EC7BAC8FB08A408EFC6BB7702973D1C</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1365-2966.2010.16574.x</idno>
<idno type="url">https://api.istex.fr/document/0CA9F33E9EC7BAC8FB08A408EFC6BB7702973D1C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000252</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000252</idno>
<idno type="wicri:Area/Istex/Curation">000252</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C27</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C27</idno>
<idno type="wicri:doubleKey">0035-8711:2010:Srianand R:detection:of:cm</idno>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:499F61CEF96B642E33B4472A089A7C19F572F45B</idno>
<idno type="url">https://api.istex.fr/document/499F61CEF96B642E33B4472A089A7C19F572F45B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D83</idno>
<idno type="wicri:Area/Istex/Curation">000D83</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A13</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A13</idno>
<idno type="wicri:doubleKey">0035-8711:2010:Srianand R:detection:of:cm</idno>
<idno type="wicri:Area/Main/Merge">007846</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:10-0328288</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002559</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003A27</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">002507</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">002507</idno>
<idno type="wicri:doubleKey">0035-8711:2010:Srianand R:detection:of:cm</idno>
<idno type="wicri:Area/Main/Merge">007F75</idno>
<idno type="wicri:Area/Main/Curation">007310</idno>
<idno type="wicri:Area/Main/Exploration">007310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Detection of 21‐cm, H
<hi rend="subscript">2</hi>
and deuterium absorption at
<hi rend="italic">z</hi>
> 3 along the line of sight to J1337+3152
<ref type="note" target="#fn1">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Srianand, R" sort="Srianand, R" uniqKey="Srianand R" first="R." last="Srianand">R. Srianand</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Inde</country>
<wicri:regionArea>IUCAA, Postbag 4, Ganeshkhind, Pune 411 007</wicri:regionArea>
<wicri:noRegion>Pune 411 007</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Inde</country>
</affiliation>
</author>
<author>
<name sortKey="Gupta, N" sort="Gupta, N" uniqKey="Gupta N" first="N." last="Gupta">N. Gupta</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australia Telescope National Facility, CSIRO, Epping, NSW 1710</wicri:regionArea>
<wicri:noRegion>NSW 1710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petitjean, P" sort="Petitjean, P" uniqKey="Petitjean P" first="P." last="Petitjean">P. Petitjean</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Paris 6, UMR 7095, Institut d'Astrophysique de Paris‐CNRS, 98bis Boulevard Arago, 75014 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Noterdaeme, P" sort="Noterdaeme, P" uniqKey="Noterdaeme P" first="P." last="Noterdaeme">P. Noterdaeme</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Inde</country>
<wicri:regionArea>IUCAA, Postbag 4, Ganeshkhind, Pune 411 007</wicri:regionArea>
<wicri:noRegion>Pune 411 007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ledoux, C" sort="Ledoux, C" uniqKey="Ledoux C" first="C." last="Ledoux">C. Ledoux</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Chili</country>
<wicri:regionArea>European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago 19</wicri:regionArea>
<wicri:noRegion>Santiago 19</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">405</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1888">1888</biblScope>
<biblScope unit="page" to="1900">1900</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-07-01">2010-07-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>21cm-Line</term>
<term>Absorption</term>
<term>Absorption band</term>
<term>Absorption line</term>
<term>Absorption lines</term>
<term>Absorption systems</term>
<term>Abundance</term>
<term>Abundance ratio</term>
<term>Astration</term>
<term>Astration factor</term>
<term>Average metallicities</term>
<term>Blue wing</term>
<term>Blue wings</term>
<term>Bottom panel</term>
<term>Bottom panels</term>
<term>Chemical evolution</term>
<term>Chemical evolution models</term>
<term>Column densities</term>
<term>Column density</term>
<term>Constraint</term>
<term>Deuterium</term>
<term>Different components</term>
<term>Different phases</term>
<term>Dlas</term>
<term>Dust content</term>
<term>Dust depletion</term>
<term>Excess absorption</term>
<term>Ferland</term>
<term>Fundamental constants</term>
<term>Galaxies</term>
<term>Gmrt</term>
<term>Gmrt spectra</term>
<term>Gmrt spectrum</term>
<term>Heavy element abundances</term>
<term>Higher lyman series lines</term>
<term>Hydrogen molecules</term>
<term>Individual components</term>
<term>Ionization</term>
<term>Ionization correction</term>
<term>Ionization parameter</term>
<term>Ivanchik</term>
<term>Journal compilation</term>
<term>Kinetic temperature</term>
<term>Kinetic temperatures</term>
<term>Large sample</term>
<term>Ledoux</term>
<term>Lines mark</term>
<term>Lower limit</term>
<term>Lyman</term>
<term>Lyman absorption</term>
<term>Lyman forest</term>
<term>Lyman limit</term>
<term>Lyman line</term>
<term>Lyman series absorption lines</term>
<term>Lyman series lines</term>
<term>Mass ratio</term>
<term>Metal absorption lines</term>
<term>Metal lines</term>
<term>Metallicities</term>
<term>Metallicity</term>
<term>Mnras</term>
<term>Models</term>
<term>Molecular absorption</term>
<term>Molecular fraction</term>
<term>Molecular hydrogen absorption lines</term>
<term>Noterdaeme</term>
<term>Optical depth</term>
<term>Other elements</term>
<term>Oxygen metallicity</term>
<term>Particle density</term>
<term>Petitjean</term>
<term>Petitjean srianand</term>
<term>Pettini</term>
<term>Photoionization</term>
<term>Physical conditions</term>
<term>Positions</term>
<term>Primordial value</term>
<term>Quasar</term>
<term>Quasars</term>
<term>Radio source</term>
<term>Red shift</term>
<term>Redshift</term>
<term>Same system</term>
<term>Same time</term>
<term>Sdss</term>
<term>Second epoch observation</term>
<term>Solar photospheric abundances</term>
<term>Srianand</term>
<term>Strongest metal line component</term>
<term>Strongest transitions</term>
<term>Time variation</term>
<term>Total column density</term>
<term>Tubbs wolfe</term>
<term>Upper limit</term>
<term>Uves</term>
<term>Uves spectrum</term>
<term>Vanden berk</term>
<term>Varshalovich levshakov</term>
<term>Velocity dispersion</term>
<term>Velocity scale</term>
<term>Velocity shift</term>
<term>Visual echelle spectrograph</term>
<term>Voigt</term>
<term>WMAP satellite</term>
<term>Wavelength range</term>
<term>Werner band absorption lines</term>
<term>Wide range</term>
<term>Zabs</term>
<term>Zabs system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Abondance</term>
<term>Absorption moléculaire</term>
<term>Bande absorption</term>
<term>Constante fondamentale</term>
<term>Densité colonne</term>
<term>Deutérium</term>
<term>Déplacement vers le rouge</term>
<term>Evolution chimique</term>
<term>Galaxies</term>
<term>Modèle</term>
<term>Molécule d'hydrogène</term>
<term>Métallicité</term>
<term>Photoionisation</term>
<term>Position</term>
<term>Quasar</term>
<term>Raie 21 cm</term>
<term>Raie absorption</term>
<term>Satellite WMAP</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption</term>
<term>Absorption line</term>
<term>Absorption lines</term>
<term>Absorption systems</term>
<term>Abundance ratio</term>
<term>Astration</term>
<term>Astration factor</term>
<term>Average metallicities</term>
<term>Blue wing</term>
<term>Blue wings</term>
<term>Bottom panel</term>
<term>Bottom panels</term>
<term>Chemical evolution</term>
<term>Chemical evolution models</term>
<term>Column densities</term>
<term>Column density</term>
<term>Constraint</term>
<term>Deuterium</term>
<term>Different components</term>
<term>Different phases</term>
<term>Dlas</term>
<term>Dust content</term>
<term>Dust depletion</term>
<term>Excess absorption</term>
<term>Ferland</term>
<term>Fundamental constants</term>
<term>Gmrt</term>
<term>Gmrt spectra</term>
<term>Gmrt spectrum</term>
<term>Heavy element abundances</term>
<term>Higher lyman series lines</term>
<term>Individual components</term>
<term>Ionization</term>
<term>Ionization correction</term>
<term>Ionization parameter</term>
<term>Ivanchik</term>
<term>Journal compilation</term>
<term>Kinetic temperature</term>
<term>Kinetic temperatures</term>
<term>Large sample</term>
<term>Ledoux</term>
<term>Lines mark</term>
<term>Lower limit</term>
<term>Lyman</term>
<term>Lyman absorption</term>
<term>Lyman forest</term>
<term>Lyman limit</term>
<term>Lyman line</term>
<term>Lyman series absorption lines</term>
<term>Lyman series lines</term>
<term>Mass ratio</term>
<term>Metal absorption lines</term>
<term>Metal lines</term>
<term>Metallicities</term>
<term>Metallicity</term>
<term>Mnras</term>
<term>Molecular fraction</term>
<term>Molecular hydrogen absorption lines</term>
<term>Noterdaeme</term>
<term>Optical depth</term>
<term>Other elements</term>
<term>Oxygen metallicity</term>
<term>Particle density</term>
<term>Petitjean</term>
<term>Petitjean srianand</term>
<term>Pettini</term>
<term>Physical conditions</term>
<term>Primordial value</term>
<term>Quasar</term>
<term>Radio source</term>
<term>Redshift</term>
<term>Same system</term>
<term>Same time</term>
<term>Sdss</term>
<term>Second epoch observation</term>
<term>Solar photospheric abundances</term>
<term>Srianand</term>
<term>Strongest metal line component</term>
<term>Strongest transitions</term>
<term>Time variation</term>
<term>Total column density</term>
<term>Tubbs wolfe</term>
<term>Upper limit</term>
<term>Uves</term>
<term>Uves spectrum</term>
<term>Vanden berk</term>
<term>Varshalovich levshakov</term>
<term>Velocity dispersion</term>
<term>Velocity scale</term>
<term>Velocity shift</term>
<term>Visual echelle spectrograph</term>
<term>Voigt</term>
<term>Wavelength range</term>
<term>Werner band absorption lines</term>
<term>Wide range</term>
<term>Zabs</term>
<term>Zabs system</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the detection of 21‐cm and molecular hydrogen absorption lines in the same damped Lyman α system (DLA; with log N(H i) = 21.36 ± 0.10) at zabs= 3.17447 towards SDSS J133724.69+315254.55 (zem∼ 3.174). We estimate the spin temperature of the gas to be TS= 600+222−159 K, intermediate between the expected values for cold and warm neutral media. This suggests that the H i absorption originates from a mixture of different phases. The total molecular fraction is low, , and H2 rotational level populations are not in equilibrium. The average abundance of the α‐elements is [S/H]=−1.45 ± 0.22. Nitrogen and iron are found underabundant with respect to α‐elements by ∼1.0 and ∼0.5 dex, respectively. Using photoionization models we conclude that the gas, of mean density nH∼ 2  cm−3, is located more than 270 kpc away from the quasi‐stellar object. While the position of the 21‐cm absorption line coincides with the H2 velocity profile, its centroid is shifted by ∼ 2.7 ± 1.0  km s −1 with respect to the redshift measured from the H2 lines. However, the position of the strongest metal absorption component matches the position of the 21‐cm absorption line within 0.5 km s−1. From this, we constrain the variation of the combination of fundamental constants x=α2 Gp/μ,  Δx/x=− (1.7 ± 1.7) × 10−6. This system is unique as we can at the same time have an independent constraint on μ using H2 lines. However, as the H2 column density is low, only Werner band absorption lines are seen and, unfortunately, the range of sensitivity coefficients is too narrow to provide a stringent constraint: Δμ/μ≤ 4.0 × 10−4. The Ultraviolet and Visual Echelle Spectrograph spectrum reveals another DLA at zabs= 3.16768 with log N(H i) = 20.41 ± 0.15 and low metallicity, [Si/H]=−2.68 ± 0.11, in which [O/C]∼0.18 ± 0.18 and [O/Si]∼ 0. This shows that even in the very early stages of chemical evolution, the carbon or silicon to oxygen ratios can be close to solar. Using Voigt profile fitting we derive log(N(D i)/N(H i)) =−(4.93 ± 0.15) in this system. This is a factor of 2 smaller than the value expected from the best‐fitting value of Ωb from the Wilkinson Microwave Anisotropy Probe 5‐yr data. This confirms the presence of astration of deuterium even at very low metallicity.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Chili</li>
<li>France</li>
<li>Inde</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Srianand, R" sort="Srianand, R" uniqKey="Srianand R" first="R." last="Srianand">R. Srianand</name>
</noRegion>
<name sortKey="Noterdaeme, P" sort="Noterdaeme, P" uniqKey="Noterdaeme P" first="P." last="Noterdaeme">P. Noterdaeme</name>
<name sortKey="Srianand, R" sort="Srianand, R" uniqKey="Srianand R" first="R." last="Srianand">R. Srianand</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Gupta, N" sort="Gupta, N" uniqKey="Gupta N" first="N." last="Gupta">N. Gupta</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Petitjean, P" sort="Petitjean, P" uniqKey="Petitjean P" first="P." last="Petitjean">P. Petitjean</name>
</region>
</country>
<country name="Chili">
<noRegion>
<name sortKey="Ledoux, C" sort="Ledoux, C" uniqKey="Ledoux C" first="C." last="Ledoux">C. Ledoux</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007310 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 007310 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0CA9F33E9EC7BAC8FB08A408EFC6BB7702973D1C
   |texte=   Detection of 21‐cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024