Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence

Identifieur interne : 005F06 ( Main/Exploration ); précédent : 005F05; suivant : 005F07

A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence

Auteurs : Evatt R. Hawkes [Australie] ; Obulesu Chatakonda [Australie] ; Hemanth Kolla [États-Unis] ; Alan R. Kerstein [États-Unis] ; Jacqueline H. Chen [États-Unis]

Source :

RBID : Pascal:12-0330151

Descripteurs français

English descriptors

Abstract

A new set of petascale direct numerical simulations (DNS) modelling lean hydrogen combustion with detailed chemistry in a temporally evolving slot-jet configuration is presented as a database for the development and validation of models for premixed turbulent combustion. The jet Reynolds number is 10,000, requiring grid numbers up to nearly seven billion, which was achieved by computation on 120,000 processor cores. In contrast to many prior DNS studies, a mean shear exists that drives strong turbulent mixing within the flame structure. Three cases are simulated with different Damköhler numbers, while Reynolds number is held fixed. Basic statistics are presented showing that integrated burning rates up to approximately six times the laminar burning rate are obtained. It is shown that increased flame surface area accounts for most of the enhanced burning while increases in the burning rate per unit area also play an important contribution. The database is then used to assess a new model of flame wrinkling intended for large-eddy simulations (LES). The approach draws on concepts from fractal geometry, requiring the modelling of an inner cut-off scale representing the smallest scale of flame wrinkling, and the fractal dimension controlling the resolution dependence of the unresolved flame surface area. In contrast to previous modelling, it is argued that the inner cut-off should be filter-size invariant in an inertial range. Then, dimensional and physical reasoning together with Damköhler's limiting scaling laws for the turbulent flame speed are used to infer the cut-off and fractal dimension in limiting regimes. Two methods of determining the fractal dimension are proposed: a static, algebraic expression or a dynamic approach exploiting a Germano-type identity. Finally the model is compared against the DNS in a priori tests and is found to give excellent results, quantitatively capturing the trends with time, space, filter size and Damköhler number.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence</title>
<author>
<name sortKey="Hawkes, Evatt R" sort="Hawkes, Evatt R" uniqKey="Hawkes E" first="Evatt R." last="Hawkes">Evatt R. Hawkes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Mechanical and Manufacturing Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chatakonda, Obulesu" sort="Chatakonda, Obulesu" uniqKey="Chatakonda O" first="Obulesu" last="Chatakonda">Obulesu Chatakonda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kolla, Hemanth" sort="Kolla, Hemanth" uniqKey="Kolla H" first="Hemanth" last="Kolla">Hemanth Kolla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kerstein, Alan R" sort="Kerstein, Alan R" uniqKey="Kerstein A" first="Alan R." last="Kerstein">Alan R. Kerstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jacqueline H" sort="Chen, Jacqueline H" uniqKey="Chen J" first="Jacqueline H." last="Chen">Jacqueline H. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0330151</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0330151 INIST</idno>
<idno type="RBID">Pascal:12-0330151</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001117</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004E00</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001402</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001402</idno>
<idno type="wicri:doubleKey">0010-2180:2012:Hawkes E:a:petascale:direct</idno>
<idno type="wicri:Area/Main/Merge">006237</idno>
<idno type="wicri:Area/Main/Curation">005F06</idno>
<idno type="wicri:Area/Main/Exploration">005F06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence</title>
<author>
<name sortKey="Hawkes, Evatt R" sort="Hawkes, Evatt R" uniqKey="Hawkes E" first="Evatt R." last="Hawkes">Evatt R. Hawkes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Mechanical and Manufacturing Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chatakonda, Obulesu" sort="Chatakonda, Obulesu" uniqKey="Chatakonda O" first="Obulesu" last="Chatakonda">Obulesu Chatakonda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney, NSW 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kolla, Hemanth" sort="Kolla, Hemanth" uniqKey="Kolla H" first="Hemanth" last="Kolla">Hemanth Kolla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kerstein, Alan R" sort="Kerstein, Alan R" uniqKey="Kerstein A" first="Alan R." last="Kerstein">Alan R. Kerstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jacqueline H" sort="Chen, Jacqueline H" uniqKey="Chen J" first="Jacqueline H." last="Chen">Jacqueline H. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Combustion Research Facility, Sandia National Laboratories</s1>
<s2>Livermore, CA 94551</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Livermore, CA 94551</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Combustion and flame</title>
<title level="j" type="abbreviated">Combust. flame</title>
<idno type="ISSN">0010-2180</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Combustion and flame</title>
<title level="j" type="abbreviated">Combust. flame</title>
<idno type="ISSN">0010-2180</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Combustion velocity</term>
<term>Filter</term>
<term>Flame propagation</term>
<term>Flame structure</term>
<term>Fractal dimension</term>
<term>Hydrogen</term>
<term>Large eddy simulation</term>
<term>Modeling</term>
<term>Numerical analysis</term>
<term>Numerical simulation</term>
<term>Reynolds number</term>
<term>Scaling law</term>
<term>Shear</term>
<term>Turbulence</term>
<term>Turbulent combustion</term>
<term>Turbulent flame</term>
<term>Turbulent mixing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Analyse numérique</term>
<term>Modélisation</term>
<term>Simulation grande échelle</term>
<term>Turbulence</term>
<term>Hydrogène</term>
<term>Combustion turbulente</term>
<term>Nombre Reynolds</term>
<term>Cisaillement</term>
<term>Flamme turbulente</term>
<term>Mélange turbulent</term>
<term>Structure flamme</term>
<term>Vitesse combustion</term>
<term>Dimension fractale</term>
<term>Filtre</term>
<term>Loi échelle</term>
<term>Propagation flamme</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new set of petascale direct numerical simulations (DNS) modelling lean hydrogen combustion with detailed chemistry in a temporally evolving slot-jet configuration is presented as a database for the development and validation of models for premixed turbulent combustion. The jet Reynolds number is 10,000, requiring grid numbers up to nearly seven billion, which was achieved by computation on 120,000 processor cores. In contrast to many prior DNS studies, a mean shear exists that drives strong turbulent mixing within the flame structure. Three cases are simulated with different Damköhler numbers, while Reynolds number is held fixed. Basic statistics are presented showing that integrated burning rates up to approximately six times the laminar burning rate are obtained. It is shown that increased flame surface area accounts for most of the enhanced burning while increases in the burning rate per unit area also play an important contribution. The database is then used to assess a new model of flame wrinkling intended for large-eddy simulations (LES). The approach draws on concepts from fractal geometry, requiring the modelling of an inner cut-off scale representing the smallest scale of flame wrinkling, and the fractal dimension controlling the resolution dependence of the unresolved flame surface area. In contrast to previous modelling, it is argued that the inner cut-off should be filter-size invariant in an inertial range. Then, dimensional and physical reasoning together with Damköhler's limiting scaling laws for the turbulent flame speed are used to infer the cut-off and fractal dimension in limiting regimes. Two methods of determining the fractal dimension are proposed: a static, algebraic expression or a dynamic approach exploiting a Germano-type identity. Finally the model is compared against the DNS in a priori tests and is found to give excellent results, quantitatively capturing the trends with time, space, filter size and Damköhler number.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Hawkes, Evatt R" sort="Hawkes, Evatt R" uniqKey="Hawkes E" first="Evatt R." last="Hawkes">Evatt R. Hawkes</name>
</noRegion>
<name sortKey="Chatakonda, Obulesu" sort="Chatakonda, Obulesu" uniqKey="Chatakonda O" first="Obulesu" last="Chatakonda">Obulesu Chatakonda</name>
<name sortKey="Hawkes, Evatt R" sort="Hawkes, Evatt R" uniqKey="Hawkes E" first="Evatt R." last="Hawkes">Evatt R. Hawkes</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Kolla, Hemanth" sort="Kolla, Hemanth" uniqKey="Kolla H" first="Hemanth" last="Kolla">Hemanth Kolla</name>
</noRegion>
<name sortKey="Chen, Jacqueline H" sort="Chen, Jacqueline H" uniqKey="Chen J" first="Jacqueline H." last="Chen">Jacqueline H. Chen</name>
<name sortKey="Kerstein, Alan R" sort="Kerstein, Alan R" uniqKey="Kerstein A" first="Alan R." last="Kerstein">Alan R. Kerstein</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005F06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005F06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:12-0330151
   |texte=   A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024