Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.

Identifieur interne : 000B97 ( Main/Exploration ); précédent : 000B96; suivant : 000B98

Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.

Auteurs : Gabriela Melo Rodriguez [Royaume-Uni] ; James Bowen [Royaume-Uni] ; David Grossin [France] ; Besim Ben-Nissan [Australie] ; Artemis Stamboulis [Royaume-Uni]

Source :

RBID : pubmed:28922634

Abstract

Surface modifications are usually performed on titanium alloys to improve osteo-integration and surface bioactivity. Modifications such as alkaline and acid etching, or coating with bioactive materials such as hydroxyapatite, have previously been demonstrated. The aim of this work is to develop a peptide with combined titanium oxide and hydroxyapatite binders in order to achieve a biomimetic hydroxyapatite coating on titanium surfaces. The technology would also be applicable for the functionalisation of titanium and hydroxyapatite surfaces for selective protein adsorption, conjugation of antimicrobial peptides, and adsorption of specialised drugs for drug delivery. In this work, functionalisation of Ti6Al4V and hydroxyapatite surfaces was achieved using combined titanium-hydroxyapatite (Ti-Hap) peptides based on titanium peptide binder (KKLPDA) and hydroxyapatite peptide binder (EEEEEEEE). Homogeneous peptide coatings on Ti6Al4V surfaces were obtained after surface chemical treatments with a 30wt% aqueous solution of H2O2 for 24 and 48h. The treated titanium surfaces presented an average roughness of Sa=197nm (24h) and Sa=128nm (48h); an untreated mirror polished sample exhibited an Sa of 13nm. The advancing water contact angle of the titanium oxide layer after 1h of exposure to 30wt% aqueous solution of H2O2 was around 65°, decreasing gradually with time until it reached 35° after a 48h exposure, suggesting that the surface hydrophilicity increased over etching time. The presence of a lysine (L) amino acid in the sequence of the titanium binder resulted in fluorescence intensity roughly 16% higher compared with the arginine (R) amino acid analogue and therefore the lysine containing titanium peptide binder was used in this work. The Ti-Hap peptide KKLPDAEEEEEEEE (Ti-Hap1) was not adsorbed by the treated Ti6Al4V surfaces and therefore was modified. The modifications involved the inclusion of a glycine spacer between the binding terminals (Ti-Hap2) and the addition of a second titanium binder (KKLPDA) (Ti-Hap3 and Ti-Hap4). The combined Ti-Hap peptide which exhibited the strongest intensity after the titanium surface dip coating was KKLPDAKKLPDAEEEEEEEE (Ti-HAp4). On the other hand, hydroxyapatite surfaces, exhibiting an average roughness of Sa=1.42μm, showed a higher fluorescence for peptides with a higher negative net charge.

DOI: 10.1016/j.colsurfb.2017.09.022
PubMed: 28922634


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.</title>
<author>
<name sortKey="Rodriguez, Gabriela Melo" sort="Rodriguez, Gabriela Melo" uniqKey="Rodriguez G" first="Gabriela Melo" last="Rodriguez">Gabriela Melo Rodriguez</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowen, James" sort="Bowen, James" uniqKey="Bowen J" first="James" last="Bowen">James Bowen</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Faculty of Mathematics, Computing and Technology, School of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Faculty of Mathematics, Computing and Technology, School of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes, MK7 6AA</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grossin, David" sort="Grossin, David" uniqKey="Grossin D" first="David" last="Grossin">David Grossin</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIRIMAT Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CIRIMAT Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4</wicri:regionArea>
<wicri:noRegion>31030 Toulouse Cedex 4</wicri:noRegion>
<wicri:noRegion>31030 Toulouse Cedex 4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ben Nissan, Besim" sort="Ben Nissan, Besim" uniqKey="Ben Nissan B" first="Besim" last="Ben-Nissan">Besim Ben-Nissan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007</wicri:regionArea>
<wicri:noRegion>NSW 2007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stamboulis, Artemis" sort="Stamboulis, Artemis" uniqKey="Stamboulis A" first="Artemis" last="Stamboulis">Artemis Stamboulis</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Electronic address: a.stamboulis@bham.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28922634</idno>
<idno type="pmid">28922634</idno>
<idno type="doi">10.1016/j.colsurfb.2017.09.022</idno>
<idno type="wicri:Area/PubMed/Corpus">000490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000490</idno>
<idno type="wicri:Area/PubMed/Curation">000488</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000488</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000488</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000488</idno>
<idno type="wicri:Area/Ncbi/Merge">004E82</idno>
<idno type="wicri:Area/Ncbi/Curation">004E82</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">004E82</idno>
<idno type="wicri:Area/Main/Merge">000B92</idno>
<idno type="wicri:Area/Main/Curation">000B97</idno>
<idno type="wicri:Area/Main/Exploration">000B97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.</title>
<author>
<name sortKey="Rodriguez, Gabriela Melo" sort="Rodriguez, Gabriela Melo" uniqKey="Rodriguez G" first="Gabriela Melo" last="Rodriguez">Gabriela Melo Rodriguez</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowen, James" sort="Bowen, James" uniqKey="Bowen J" first="James" last="Bowen">James Bowen</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Faculty of Mathematics, Computing and Technology, School of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Faculty of Mathematics, Computing and Technology, School of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes, MK7 6AA</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grossin, David" sort="Grossin, David" uniqKey="Grossin D" first="David" last="Grossin">David Grossin</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIRIMAT Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CIRIMAT Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4</wicri:regionArea>
<wicri:noRegion>31030 Toulouse Cedex 4</wicri:noRegion>
<wicri:noRegion>31030 Toulouse Cedex 4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ben Nissan, Besim" sort="Ben Nissan, Besim" uniqKey="Ben Nissan B" first="Besim" last="Ben-Nissan">Besim Ben-Nissan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007</wicri:regionArea>
<wicri:noRegion>NSW 2007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stamboulis, Artemis" sort="Stamboulis, Artemis" uniqKey="Stamboulis A" first="Artemis" last="Stamboulis">Artemis Stamboulis</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Electronic address: a.stamboulis@bham.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT</wicri:regionArea>
<orgName type="university">Université de Birmingham</orgName>
<placeName>
<settlement type="city">Birmingham</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Midlands de l'Ouest</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Colloids and surfaces. B, Biointerfaces</title>
<idno type="eISSN">1873-4367</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surface modifications are usually performed on titanium alloys to improve osteo-integration and surface bioactivity. Modifications such as alkaline and acid etching, or coating with bioactive materials such as hydroxyapatite, have previously been demonstrated. The aim of this work is to develop a peptide with combined titanium oxide and hydroxyapatite binders in order to achieve a biomimetic hydroxyapatite coating on titanium surfaces. The technology would also be applicable for the functionalisation of titanium and hydroxyapatite surfaces for selective protein adsorption, conjugation of antimicrobial peptides, and adsorption of specialised drugs for drug delivery. In this work, functionalisation of Ti6Al4V and hydroxyapatite surfaces was achieved using combined titanium-hydroxyapatite (Ti-Hap) peptides based on titanium peptide binder (KKLPDA) and hydroxyapatite peptide binder (EEEEEEEE). Homogeneous peptide coatings on Ti6Al4V surfaces were obtained after surface chemical treatments with a 30wt% aqueous solution of H2O2 for 24 and 48h. The treated titanium surfaces presented an average roughness of Sa=197nm (24h) and Sa=128nm (48h); an untreated mirror polished sample exhibited an Sa of 13nm. The advancing water contact angle of the titanium oxide layer after 1h of exposure to 30wt% aqueous solution of H2O2 was around 65°, decreasing gradually with time until it reached 35° after a 48h exposure, suggesting that the surface hydrophilicity increased over etching time. The presence of a lysine (L) amino acid in the sequence of the titanium binder resulted in fluorescence intensity roughly 16% higher compared with the arginine (R) amino acid analogue and therefore the lysine containing titanium peptide binder was used in this work. The Ti-Hap peptide KKLPDAEEEEEEEE (Ti-Hap1) was not adsorbed by the treated Ti6Al4V surfaces and therefore was modified. The modifications involved the inclusion of a glycine spacer between the binding terminals (Ti-Hap2) and the addition of a second titanium binder (KKLPDA) (Ti-Hap3 and Ti-Hap4). The combined Ti-Hap peptide which exhibited the strongest intensity after the titanium surface dip coating was KKLPDAKKLPDAEEEEEEEE (Ti-HAp4). On the other hand, hydroxyapatite surfaces, exhibiting an average roughness of Sa=1.42μm, showed a higher fluorescence for peptides with a higher negative net charge.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Midlands de l'Ouest</li>
</region>
<settlement>
<li>Birmingham</li>
</settlement>
<orgName>
<li>Université de Birmingham</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Rodriguez, Gabriela Melo" sort="Rodriguez, Gabriela Melo" uniqKey="Rodriguez G" first="Gabriela Melo" last="Rodriguez">Gabriela Melo Rodriguez</name>
</region>
<name sortKey="Bowen, James" sort="Bowen, James" uniqKey="Bowen J" first="James" last="Bowen">James Bowen</name>
<name sortKey="Stamboulis, Artemis" sort="Stamboulis, Artemis" uniqKey="Stamboulis A" first="Artemis" last="Stamboulis">Artemis Stamboulis</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Grossin, David" sort="Grossin, David" uniqKey="Grossin D" first="David" last="Grossin">David Grossin</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Ben Nissan, Besim" sort="Ben Nissan, Besim" uniqKey="Ben Nissan B" first="Besim" last="Ben-Nissan">Besim Ben-Nissan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28922634
   |texte=   Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28922634" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024