Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders

Identifieur interne : 001E46 ( Istex/Curation ); précédent : 001E45; suivant : 001E47

Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders

Auteurs : John M. Warman [Pays-Bas] ; De Haas Matthijs P. [Pays-Bas] ; Pichat Pierre [France] ; Koster Theodorus P. M. [Pays-Bas] ; Van Der Zouwen-Assink Etty A. [Pays-Bas] ; Mackor Adri [Pays-Bas] ; Cooper Ronald [Australie]

Source :

RBID : ISTEX:A0DE1798AD1BD7640DC87731A7E070CF4363D8D0

Descripteurs français

English descriptors

Abstract

Abstract: Electronic charge carriers have been produced in commercial and special laboratory samples of Al2O3, MgO and TiO2 powders by band-gap excitation using nanosecond pulses of high-energy (3 MeV electron) radiation. Changes in conductivity have been monitored by time-resolved microwave conductivity (TRMC) in the frequency range 26.5–38 GHz. The effective mobilities of the carriers formed, ∑μ = [μ(e)+μ(h)], have been estimated from the magnitude of the end-of-pulse conductivity. The value of 3×10−8 m2 Vs found for Al2O3 was close to the limit of measurement. For MgO the mobility of the primary carrier was found to be considerably larger than expected for a small polaron, i.e. 20 × 10-4m2/Vs. Localisation occurred very rapidly (subnanosecond) in the virgin, unirradiated material. Continued irradiation to an accumulated dose a few kiloGrays resulted in an increase of the carrier lifetime into the nanosecond regime due to radiation-induced trap deactivation. Mobility values for TiO2 samples varied within the polaron range from a high of 5 × 10-4m2/Vs to a low of 0.04 × 10-4m2/Vs. A marked decrease in the effective mobility with decreasing size for nanometre particles is attributed to subnanosecond equilibrium between a mobile bulk and a localized surface, defect state. The conductivity transient for Degussa P25 was dramatically influenced by surface conditions including deposition of Pt and covering with iso-propanol. Alumina-silica coated pigment particles were insensitive to alcohol. No afterpulse conductivity could be measured for a sample bulk-doped with 0.85 atom percent Cr3+ presumably due to very rapid impurity induced bulk recombination.

Url:
DOI: 10.1016/1359-0197(91)90015-T

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:A0DE1798AD1BD7640DC87731A7E070CF4363D8D0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders</title>
<author>
<name sortKey="Warman, John M" sort="Warman, John M" uniqKey="Warman J" first="John M." last="Warman">John M. Warman</name>
<affiliation wicri:level="1">
<mods:affiliation>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthijs P, De Haas" sort="Matthijs P, De Haas" uniqKey="Matthijs P D" first="De Haas" last="Matthijs P.">De Haas Matthijs P.</name>
<affiliation wicri:level="1">
<mods:affiliation>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pierre, Pichat" sort="Pierre, Pichat" uniqKey="Pierre P" first="Pichat" last="Pierre">Pichat Pierre</name>
<affiliation wicri:level="1">
<mods:affiliation>U.R.A. au CNRS “Photocatalyse, Catalyse et Environment”, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>U.R.A. au CNRS “Photocatalyse, Catalyse et Environment”, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Theodorus P M, Koster" sort="Theodorus P M, Koster" uniqKey="Theodorus P M K" first="Koster" last="Theodorus P. M.">Koster Theodorus P. M.</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Etty A, Van Der Zouwen Assink" sort="Etty A, Van Der Zouwen Assink" uniqKey="Etty A V" first="Van Der Zouwen-Assink" last="Etty A.">Van Der Zouwen-Assink Etty A.</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Adri, Mackor" sort="Adri, Mackor" uniqKey="Adri M" first="Mackor" last="Adri">Mackor Adri</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ronald, Cooper" sort="Ronald, Cooper" uniqKey="Ronald C" first="Cooper" last="Ronald">Cooper Ronald</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Physical Chemistry, University of Melbourne, Melbourne, Victoria, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physical Chemistry, University of Melbourne, Melbourne, Victoria</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A0DE1798AD1BD7640DC87731A7E070CF4363D8D0</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/1359-0197(91)90015-T</idno>
<idno type="url">https://api.istex.fr/document/A0DE1798AD1BD7640DC87731A7E070CF4363D8D0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E46</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E46</idno>
<idno type="wicri:Area/Istex/Curation">001E46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders</title>
<author>
<name sortKey="Warman, John M" sort="Warman, John M" uniqKey="Warman J" first="John M." last="Warman">John M. Warman</name>
<affiliation wicri:level="1">
<mods:affiliation>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthijs P, De Haas" sort="Matthijs P, De Haas" uniqKey="Matthijs P D" first="De Haas" last="Matthijs P.">De Haas Matthijs P.</name>
<affiliation wicri:level="1">
<mods:affiliation>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Radiation Chemistry Department, IRI, Delft University of Technology, Mekelweg 15, 2629 JB Delft</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pierre, Pichat" sort="Pierre, Pichat" uniqKey="Pierre P" first="Pichat" last="Pierre">Pichat Pierre</name>
<affiliation wicri:level="1">
<mods:affiliation>U.R.A. au CNRS “Photocatalyse, Catalyse et Environment”, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully Cedex, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>U.R.A. au CNRS “Photocatalyse, Catalyse et Environment”, Ecole Centrale de Lyon, B.P. 163, 69131 Ecully Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Theodorus P M, Koster" sort="Theodorus P M, Koster" uniqKey="Theodorus P M K" first="Koster" last="Theodorus P. M.">Koster Theodorus P. M.</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Etty A, Van Der Zouwen Assink" sort="Etty A, Van Der Zouwen Assink" uniqKey="Etty A V" first="Van Der Zouwen-Assink" last="Etty A.">Van Der Zouwen-Assink Etty A.</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Adri, Mackor" sort="Adri, Mackor" uniqKey="Adri M" first="Mackor" last="Adri">Mackor Adri</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands</mods:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Institute of Applied Chemistry TNO, P.O. Box 108, 3700 AC Zeist</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ronald, Cooper" sort="Ronald, Cooper" uniqKey="Ronald C" first="Cooper" last="Ronald">Cooper Ronald</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Physical Chemistry, University of Melbourne, Melbourne, Victoria, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physical Chemistry, University of Melbourne, Melbourne, Victoria</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal of Radiation Applications & Instrumentation. Part C, Radiation Physics & Chemistry</title>
<title level="j" type="abbrev">IJRAIC</title>
<idno type="ISSN">1359-0197</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="433">433</biblScope>
<biblScope unit="page" to="442">442</biblScope>
</imprint>
<idno type="ISSN">1359-0197</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1359-0197</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Anatase samples</term>
<term>Approx</term>
<term>Average energy</term>
<term>Carrier</term>
<term>Certain cases</term>
<term>Charge carrier</term>
<term>Charge carrier mobilities</term>
<term>Charge carrier mobility</term>
<term>Charge carriers</term>
<term>Chem</term>
<term>Complete lack</term>
<term>Conduction band</term>
<term>Conductivity</term>
<term>Conductivity signal</term>
<term>Conductivity transients</term>
<term>Crystallite</term>
<term>Cylindrical cavity</term>
<term>Dark conductivity</term>
<term>Decay kinetics</term>
<term>Defect site</term>
<term>Definite difference</term>
<term>Degussa</term>
<term>Different samples</term>
<term>Doped samples</term>
<term>Effective mobility</term>
<term>Electronic charge carriers</term>
<term>Electronic processes</term>
<term>Energy deposition</term>
<term>First pulse</term>
<term>Flame reactor</term>
<term>Free electrons</term>
<term>Haas</term>
<term>Hall mobilities</term>
<term>Herrmann</term>
<term>Herrmann disdier</term>
<term>Hole mobilities</term>
<term>Important role</term>
<term>Individual crystallites</term>
<term>Initial concentration</term>
<term>Initial lifetime</term>
<term>Lattice</term>
<term>Literature values</term>
<term>Localisation</term>
<term>Localised</term>
<term>Macherey nagel</term>
<term>Major impurities</term>
<term>Maximum value</term>
<term>Microwave</term>
<term>Microwave conductivity</term>
<term>Microwave conductivity signals</term>
<term>Mobile carrier</term>
<term>Mobile charge carrier</term>
<term>Mobility</term>
<term>Mobility values</term>
<term>Nanosecond</term>
<term>Pair formation energy</term>
<term>Particle size</term>
<term>Particle surface</term>
<term>Particular sample</term>
<term>Perspex</term>
<term>Perspex block</term>
<term>Perspex block arrangement</term>
<term>Photocatalytic oxidation</term>
<term>Phys</term>
<term>Pichat</term>
<term>Pigment particles</term>
<term>Polaron</term>
<term>Powder form</term>
<term>Powder sample</term>
<term>Powder samples</term>
<term>Preliminary experiments</term>
<term>Present case</term>
<term>Present compounds</term>
<term>Present technique</term>
<term>Present work</term>
<term>Pulse shape</term>
<term>Pulse width</term>
<term>Quantitative analysis</term>
<term>Redox chemistry</term>
<term>Relative electron density</term>
<term>Rutile</term>
<term>Rutile regions</term>
<term>Sample cavity</term>
<term>Sample geometry</term>
<term>Semiconductor</term>
<term>Semiconductor materials</term>
<term>Short lifetime</term>
<term>Small polaron</term>
<term>Subnanosecond timescale</term>
<term>Surface deposit</term>
<term>Tio2</term>
<term>Tio2 particles</term>
<term>Tioxide</term>
<term>Transient</term>
<term>Transient conductivity</term>
<term>Unit dose</term>
<term>Vacuum oven</term>
<term>Warman</term>
<term>Wave pattern</term>
<term>Waveguide</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anatase</term>
<term>Anatase samples</term>
<term>Approx</term>
<term>Average energy</term>
<term>Carrier</term>
<term>Certain cases</term>
<term>Charge carrier</term>
<term>Charge carrier mobilities</term>
<term>Charge carrier mobility</term>
<term>Charge carriers</term>
<term>Chem</term>
<term>Complete lack</term>
<term>Conduction band</term>
<term>Conductivity</term>
<term>Conductivity signal</term>
<term>Conductivity transients</term>
<term>Crystallite</term>
<term>Cylindrical cavity</term>
<term>Dark conductivity</term>
<term>Decay kinetics</term>
<term>Defect site</term>
<term>Definite difference</term>
<term>Degussa</term>
<term>Different samples</term>
<term>Doped samples</term>
<term>Effective mobility</term>
<term>Electronic charge carriers</term>
<term>Electronic processes</term>
<term>Energy deposition</term>
<term>First pulse</term>
<term>Flame reactor</term>
<term>Free electrons</term>
<term>Haas</term>
<term>Hall mobilities</term>
<term>Herrmann</term>
<term>Herrmann disdier</term>
<term>Hole mobilities</term>
<term>Important role</term>
<term>Individual crystallites</term>
<term>Initial concentration</term>
<term>Initial lifetime</term>
<term>Lattice</term>
<term>Literature values</term>
<term>Localisation</term>
<term>Localised</term>
<term>Macherey nagel</term>
<term>Major impurities</term>
<term>Maximum value</term>
<term>Microwave</term>
<term>Microwave conductivity</term>
<term>Microwave conductivity signals</term>
<term>Mobile carrier</term>
<term>Mobile charge carrier</term>
<term>Mobility</term>
<term>Mobility values</term>
<term>Nanosecond</term>
<term>Pair formation energy</term>
<term>Particle size</term>
<term>Particle surface</term>
<term>Particular sample</term>
<term>Perspex</term>
<term>Perspex block</term>
<term>Perspex block arrangement</term>
<term>Photocatalytic oxidation</term>
<term>Phys</term>
<term>Pichat</term>
<term>Pigment particles</term>
<term>Polaron</term>
<term>Powder form</term>
<term>Powder sample</term>
<term>Powder samples</term>
<term>Preliminary experiments</term>
<term>Present case</term>
<term>Present compounds</term>
<term>Present technique</term>
<term>Present work</term>
<term>Pulse shape</term>
<term>Pulse width</term>
<term>Quantitative analysis</term>
<term>Redox chemistry</term>
<term>Relative electron density</term>
<term>Rutile</term>
<term>Rutile regions</term>
<term>Sample cavity</term>
<term>Sample geometry</term>
<term>Semiconductor</term>
<term>Semiconductor materials</term>
<term>Short lifetime</term>
<term>Small polaron</term>
<term>Subnanosecond timescale</term>
<term>Surface deposit</term>
<term>Tio2</term>
<term>Tio2 particles</term>
<term>Tioxide</term>
<term>Transient</term>
<term>Transient conductivity</term>
<term>Unit dose</term>
<term>Vacuum oven</term>
<term>Warman</term>
<term>Wave pattern</term>
<term>Waveguide</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Transporteur</term>
<term>Analyse quantitative</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Electronic charge carriers have been produced in commercial and special laboratory samples of Al2O3, MgO and TiO2 powders by band-gap excitation using nanosecond pulses of high-energy (3 MeV electron) radiation. Changes in conductivity have been monitored by time-resolved microwave conductivity (TRMC) in the frequency range 26.5–38 GHz. The effective mobilities of the carriers formed, ∑μ = [μ(e)+μ(h)], have been estimated from the magnitude of the end-of-pulse conductivity. The value of 3×10−8 m2 Vs found for Al2O3 was close to the limit of measurement. For MgO the mobility of the primary carrier was found to be considerably larger than expected for a small polaron, i.e. 20 × 10-4m2/Vs. Localisation occurred very rapidly (subnanosecond) in the virgin, unirradiated material. Continued irradiation to an accumulated dose a few kiloGrays resulted in an increase of the carrier lifetime into the nanosecond regime due to radiation-induced trap deactivation. Mobility values for TiO2 samples varied within the polaron range from a high of 5 × 10-4m2/Vs to a low of 0.04 × 10-4m2/Vs. A marked decrease in the effective mobility with decreasing size for nanometre particles is attributed to subnanosecond equilibrium between a mobile bulk and a localized surface, defect state. The conductivity transient for Degussa P25 was dramatically influenced by surface conditions including deposition of Pt and covering with iso-propanol. Alumina-silica coated pigment particles were insensitive to alcohol. No afterpulse conductivity could be measured for a sample bulk-doped with 0.85 atom percent Cr3+ presumably due to very rapid impurity induced bulk recombination.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 001E46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:A0DE1798AD1BD7640DC87731A7E070CF4363D8D0
   |texte=   Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024