Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS

Identifieur interne : 002D77 ( Istex/Corpus ); précédent : 002D76; suivant : 002D78

THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS

Auteurs : Roger G. Hiller ; Pamela M. Wrench ; Andrew P. Gooley ; Grant Shoebridge ; Jacques Breton

Source :

RBID : ISTEX:F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A

English descriptors

Abstract

A major light‐harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.

Url:
DOI: 10.1111/j.1751-1097.1993.tb02267.x

Links to Exploration step

ISTEX:F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
<author>
<name sortKey="Hiller, Roger G" sort="Hiller, Roger G" uniqKey="Hiller R" first="Roger G." last="Hiller">Roger G. Hiller</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: *To whom correspondence should be addressed.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wrench, Pamela M" sort="Wrench, Pamela M" uniqKey="Wrench P" first="Pamela M." last="Wrench">Pamela M. Wrench</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gooley, Andrew P" sort="Gooley, Andrew P" uniqKey="Gooley A" first="Andrew P." last="Gooley">Andrew P. Gooley</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shoebridge, Grant" sort="Shoebridge, Grant" uniqKey="Shoebridge G" first="Grant" last="Shoebridge">Grant Shoebridge</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Breton, Jacques" sort="Breton, Jacques" uniqKey="Breton J" first="Jacques" last="Breton">Jacques Breton</name>
<affiliation>
<mods:affiliation>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1111/j.1751-1097.1993.tb02267.x</idno>
<idno type="url">https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002D77</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002D77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
<author>
<name sortKey="Hiller, Roger G" sort="Hiller, Roger G" uniqKey="Hiller R" first="Roger G." last="Hiller">Roger G. Hiller</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: *To whom correspondence should be addressed.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wrench, Pamela M" sort="Wrench, Pamela M" uniqKey="Wrench P" first="Pamela M." last="Wrench">Pamela M. Wrench</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gooley, Andrew P" sort="Gooley, Andrew P" uniqKey="Gooley A" first="Andrew P." last="Gooley">Andrew P. Gooley</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shoebridge, Grant" sort="Shoebridge, Grant" uniqKey="Shoebridge G" first="Grant" last="Shoebridge">Grant Shoebridge</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Breton, Jacques" sort="Breton, Jacques" uniqKey="Breton J" first="Jacques" last="Breton">Jacques Breton</name>
<affiliation>
<mods:affiliation>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Photochemistry and Photobiology</title>
<title level="j" type="alt">PHOTOCHEMISTRY PHOTOBIOLOGY</title>
<idno type="ISSN">0031-8655</idno>
<idno type="eISSN">1751-1097</idno>
<imprint>
<biblScope unit="vol">57</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="125">125</biblScope>
<biblScope unit="page" to="131">131</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1993-01">1993-01</date>
</imprint>
<idno type="ISSN">0031-8655</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0031-8655</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbance</term>
<term>Absorbance spectrum</term>
<term>Acid sequence</term>
<term>Amphidinium</term>
<term>Amphidinium protein</term>
<term>Antigenic sites</term>
<term>Binding proteins</term>
<term>Brown algae</term>
<term>Carotenoid</term>
<term>Chlorophyll</term>
<term>Chromophyte algae</term>
<term>Considerable identity</term>
<term>Decylmaltoside</term>
<term>Dichroism</term>
<term>Digitonin</term>
<term>Dinoflagellate</term>
<term>Excellent energy transfer</term>
<term>Excitation spectrum</term>
<term>Febs lett</term>
<term>Fluorescence excitation spectrum</term>
<term>Free pigment</term>
<term>High performance</term>
<term>Higher plants</term>
<term>Hiller</term>
<term>Linear dichroism</term>
<term>Marine dinoflagellate</term>
<term>Marine dinoflagellate glenodinium</term>
<term>Peptide</term>
<term>Peptide profiles</term>
<term>Peridinin</term>
<term>Persistent ambiguity</term>
<term>Pigment composition</term>
<term>Plant physiol</term>
<term>Polyacrylamide</term>
<term>Polyacrylamide electrophoresis</term>
<term>Polypeptide</term>
<term>Protein assembly</term>
<term>Roger hiller</term>
<term>Single peptide</term>
<term>Sodium dodecylsulfate</term>
<term>Standard proteins</term>
<term>Strong cotton effect</term>
<term>Sucrose</term>
<term>Sucrose gradient</term>
<term>Thylakoids</term>
<term>Unpublished data</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorbance</term>
<term>Absorbance spectrum</term>
<term>Acid sequence</term>
<term>Amphidinium</term>
<term>Amphidinium protein</term>
<term>Antigenic sites</term>
<term>Binding proteins</term>
<term>Brown algae</term>
<term>Carotenoid</term>
<term>Chlorophyll</term>
<term>Chromophyte algae</term>
<term>Considerable identity</term>
<term>Decylmaltoside</term>
<term>Dichroism</term>
<term>Digitonin</term>
<term>Dinoflagellate</term>
<term>Excellent energy transfer</term>
<term>Excitation spectrum</term>
<term>Febs lett</term>
<term>Fluorescence excitation spectrum</term>
<term>Free pigment</term>
<term>High performance</term>
<term>Higher plants</term>
<term>Hiller</term>
<term>Linear dichroism</term>
<term>Marine dinoflagellate</term>
<term>Marine dinoflagellate glenodinium</term>
<term>Peptide</term>
<term>Peptide profiles</term>
<term>Peridinin</term>
<term>Persistent ambiguity</term>
<term>Pigment composition</term>
<term>Plant physiol</term>
<term>Polyacrylamide</term>
<term>Polyacrylamide electrophoresis</term>
<term>Polypeptide</term>
<term>Protein assembly</term>
<term>Roger hiller</term>
<term>Single peptide</term>
<term>Sodium dodecylsulfate</term>
<term>Standard proteins</term>
<term>Strong cotton effect</term>
<term>Sucrose</term>
<term>Sucrose gradient</term>
<term>Thylakoids</term>
<term>Unpublished data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A major light‐harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>amphidinium</json:string>
<json:string>chlorophyll</json:string>
<json:string>thylakoids</json:string>
<json:string>absorbance</json:string>
<json:string>peptide</json:string>
<json:string>digitonin</json:string>
<json:string>dinoflagellate</json:string>
<json:string>decylmaltoside</json:string>
<json:string>sucrose</json:string>
<json:string>polypeptide</json:string>
<json:string>carotenoid</json:string>
<json:string>hiller</json:string>
<json:string>higher plants</json:string>
<json:string>dichroism</json:string>
<json:string>peridinin</json:string>
<json:string>polyacrylamide</json:string>
<json:string>plant physiol</json:string>
<json:string>free pigment</json:string>
<json:string>acid sequence</json:string>
<json:string>sucrose gradient</json:string>
<json:string>roger hiller</json:string>
<json:string>absorbance spectrum</json:string>
<json:string>brown algae</json:string>
<json:string>binding proteins</json:string>
<json:string>febs lett</json:string>
<json:string>chromophyte algae</json:string>
<json:string>excellent energy transfer</json:string>
<json:string>sodium dodecylsulfate</json:string>
<json:string>high performance</json:string>
<json:string>amphidinium protein</json:string>
<json:string>fluorescence excitation spectrum</json:string>
<json:string>excitation spectrum</json:string>
<json:string>pigment composition</json:string>
<json:string>standard proteins</json:string>
<json:string>peptide profiles</json:string>
<json:string>considerable identity</json:string>
<json:string>protein assembly</json:string>
<json:string>strong cotton effect</json:string>
<json:string>unpublished data</json:string>
<json:string>persistent ambiguity</json:string>
<json:string>polyacrylamide electrophoresis</json:string>
<json:string>antigenic sites</json:string>
<json:string>marine dinoflagellate</json:string>
<json:string>single peptide</json:string>
<json:string>marine dinoflagellate glenodinium</json:string>
<json:string>linear dichroism</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Roger G. Hiller</name>
<affiliations>
<json:string>School of Biological Sciences, Macquarie University, NSW 2109, Australia</json:string>
<json:string>Correspondence address: *To whom correspondence should be addressed.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Pamela M. Wrench</name>
<affiliations>
<json:string>School of Biological Sciences, Macquarie University, NSW 2109, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrew P. Gooley</name>
<affiliations>
<json:string>School of Biological Sciences, Macquarie University, NSW 2109, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Grant Shoebridge</name>
<affiliations>
<json:string>School of Biological Sciences, Macquarie University, NSW 2109, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jacques Breton</name>
<affiliations>
<json:string>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>PHP125</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-HCX1BSVZ-C</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A major light‐harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at >35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>199</abstractWordCount>
<abstractCharCount>1251</abstractCharCount>
<keywordCount>0</keywordCount>
<score>8.877</score>
<pdfWordCount>4489</pdfWordCount>
<pdfCharCount>24866</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>576 x 792 pts</pdfPageSize>
</qualityIndicators>
<title>THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
<pmid>
<json:string>8502722</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Photochemistry and Photobiology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1751-1097</json:string>
</doi>
<issn>
<json:string>0031-8655</json:string>
</issn>
<eissn>
<json:string>1751-1097</json:string>
</eissn>
<publisherId>
<json:string>PHP</json:string>
</publisherId>
<volume>57</volume>
<issue>1</issue>
<pages>
<first>125</first>
<last>131</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1993</json:string>
</date>
<geogName>
<json:string>Ill</json:string>
</geogName>
<orgName>
<json:string>Division of Fisheries</json:string>
<json:string>Alltech</json:string>
<json:string>Macquarie University</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Phaeodactylum</json:string>
<json:string>Frank Sharples</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Gif-sur-Yvette</json:string>
<json:string>France</json:string>
<json:string>Hobart</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-HCX1BSVZ-C</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biophysics</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Physical and Theoretical Chemistry</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - physiologie vegetale et developpement</json:string>
</inist>
</categories>
<publicationDate>1993</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1111/j.1751-1097.1993.tb02267.x</json:string>
</doi>
<id>F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1993-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Roger G.</forename>
<surname>Hiller</surname>
</persName>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>*To whom correspondence should be addressed.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Pamela M.</forename>
<surname>Wrench</surname>
</persName>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Andrew P.</forename>
<surname>Gooley</surname>
</persName>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Grant</forename>
<surname>Shoebridge</surname>
</persName>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Jacques</forename>
<surname>Breton</surname>
</persName>
<affiliation>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A</idno>
<idno type="ark">ark:/67375/WNG-HCX1BSVZ-C</idno>
<idno type="DOI">10.1111/j.1751-1097.1993.tb02267.x</idno>
<idno type="unit">PHP125</idno>
<idno type="toTypesetVersion">file:PHP.PHP125.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Photochemistry and Photobiology</title>
<title level="j" type="alt">PHOTOCHEMISTRY PHOTOBIOLOGY</title>
<idno type="pISSN">0031-8655</idno>
<idno type="eISSN">1751-1097</idno>
<idno type="book-DOI">10.1111/(ISSN)1751-1097</idno>
<idno type="book-part-DOI">10.1111/php.1993.57.issue-1</idno>
<idno type="product">PHP</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">57</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="125">125</biblScope>
<biblScope unit="page" to="131">131</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1993-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A major light‐harvesting complex (LHC) has been obtained from thylakoids of
<hi rend="italic">Amphidinium carterae</hi>
solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll
<hi rend="italic">c</hi>
and carotenoid to chlorophyll
<hi rend="italic">a.</hi>
Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll
<hi rend="italic">c</hi>
, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Q
<hi rend="subscript">y</hi>
transition of both forms of chlorophyll
<hi rend="italic">c</hi>
to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from
<hi rend="italic">Phaeodactylum</hi>
and
<hi rend="italic">Pavlova</hi>
and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.</p>
</abstract>
<textClass>
<keywords rend="tocHeading1">
<term>Original Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1751-1097</doi>
<issn type="print">0031-8655</issn>
<issn type="electronic">1751-1097</issn>
<idGroup>
<id type="product" value="PHP"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="PHOTOCHEMISTRY PHOTOBIOLOGY">Photochemistry and Photobiology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="01001">
<doi origin="wiley">10.1111/php.1993.57.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="57">57</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="1993-01">January 1993</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0012500" status="forIssue">
<doi origin="wiley">10.1111/j.1751-1097.1993.tb02267.x</doi>
<idGroup>
<id type="unit" value="PHP125"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Article</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2008-01-02"></event>
<event type="publishedOnlineFinalForm" date="2008-01-02"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.5 mode:FullText source:HeaderRef result:HeaderRef" date="2010-04-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="125">125</numbering>
<numbering type="pageLast" number="131">131</numbering>
</numberingGroup>
<correspondenceTo>*To whom correspondence should be addressed.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PHP.PHP125.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 31 March 1992; accepted 26 June 1992</unparsedEditorialHistory>
<countGroup>
<count type="referenceTotal" number="26"></count>
<count type="linksCrossRef" number="6"></count>
</countGroup>
<titleGroup>
<title type="main">THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Roger G.</givenNames>
<familyName>Hiller</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Pamela M.</givenNames>
<familyName>Wrench</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Andrew P.</givenNames>
<familyName>Gooley</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>Grant</givenNames>
<familyName>Shoebridge</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2">
<personName>
<givenNames>Jacques</givenNames>
<familyName>Breton</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="AU">
<unparsedAffiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A major light‐harvesting complex (LHC) has been obtained from thylakoids of
<i>Amphidinium carterae</i>
solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll
<i>c</i>
and carotenoid to chlorophyll
<i>a.</i>
Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll
<i>c</i>
, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Q
<sub>y</sub>
transition of both forms of chlorophyll
<i>c</i>
to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from
<i>Phaeodactylum</i>
and
<i>Pavlova</i>
and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger G.</namePart>
<namePart type="family">Hiller</namePart>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</affiliation>
<affiliation>Correspondence address: *To whom correspondence should be addressed.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pamela M.</namePart>
<namePart type="family">Wrench</namePart>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew P.</namePart>
<namePart type="family">Gooley</namePart>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grant</namePart>
<namePart type="family">Shoebridge</namePart>
<affiliation>School of Biological Sciences, Macquarie University, NSW 2109, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Breton</namePart>
<affiliation>Departement de Biologie Cellulaire et Moleculaire, CEA‐Saclay, Gif‐sur‐Yvette 91191 Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1993-01</dateIssued>
<edition>Received 31 March 1992; accepted 26 June 1992</edition>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="references">26</extent>
<extent unit="linksCrossRef">6</extent>
</physicalDescription>
<abstract lang="en">A major light‐harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose‐gradient centrifugation. The digitonin‐LHC forms a dark brown band at ‐17% sucrose and the decylmaltoside LHC one at ‐7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N‐terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N‐terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Photochemistry and Photobiology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0031-8655</identifier>
<identifier type="eISSN">1751-1097</identifier>
<identifier type="DOI">10.1111/(ISSN)1751-1097</identifier>
<identifier type="PublisherID">PHP</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>57</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>125</start>
<end>131</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A</identifier>
<identifier type="ark">ark:/67375/WNG-HCX1BSVZ-C</identifier>
<identifier type="DOI">10.1111/j.1751-1097.1993.tb02267.x</identifier>
<identifier type="ArticleID">PHP125</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002D77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F2F8DE1C981D3FA67DA28CAA7FC7B52D6B7C011A
   |texte=   THE MAJOR INTRINSIC LIGHT‐HARVESTING PROTEIN OF Amphidinium: CHARACTERIZATION AND RELATION TO OTHER LIGHT‐HARVESTING PROTEINS
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024