Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The study of Type Ia supernovae spectral diversity using principal component analysis

Identifieur interne : 002989 ( Istex/Corpus ); précédent : 002988; suivant : 002990

The study of Type Ia supernovae spectral diversity using principal component analysis

Auteurs : Diane Cormier ; Tamara M. Davis

Source :

RBID : ISTEX:DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164

English descriptors

Abstract

In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k‐corrections and the training of supernova light‐curve fitters.

Url:
DOI: 10.1111/j.1365-2966.2010.17590.x

Links to Exploration step

ISTEX:DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<author>
<name sortKey="Cormier, Diane" sort="Cormier, Diane" uniqKey="Cormier D" first="Diane" last="Cormier">Diane Cormier</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: diane.cormier@cea.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Tamara M" sort="Davis, Tamara M" uniqKey="Davis T" first="Tamara M." last="Davis">Tamara M. Davis</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: diane.cormier@cea.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2010.17590.x</idno>
<idno type="url">https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002989</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002989</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<author>
<name sortKey="Cormier, Diane" sort="Cormier, Diane" uniqKey="Cormier D" first="Diane" last="Cormier">Diane Cormier</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: diane.cormier@cea.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Tamara M" sort="Davis, Tamara M" uniqKey="Davis T" first="Tamara M." last="Davis">Tamara M. Davis</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: diane.cormier@cea.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">410</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="2137">2137</biblScope>
<biblScope unit="page" to="2148">2148</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-02-01">2011-02-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute magnitude</term>
<term>Average spectrum</term>
<term>Benetti</term>
<term>Blondin</term>
<term>Blondin tonry</term>
<term>Brighter objects</term>
<term>Bullseye</term>
<term>Bullseye plot</term>
<term>Bullseye plots</term>
<term>Clear trend</term>
<term>Continuous catalogue</term>
<term>Continuous data base</term>
<term>Cumulative variance</term>
<term>Data base</term>
<term>Data points</term>
<term>Davis figure</term>
<term>Different colours</term>
<term>Different components</term>
<term>Different luminosities</term>
<term>Different types</term>
<term>Distinct group</term>
<term>Emission peaks</term>
<term>Expansion velocity</term>
<term>Extreme events</term>
<term>Flat data</term>
<term>Flat sample</term>
<term>Francis wills</term>
<term>Good indication</term>
<term>Input spectra</term>
<term>Journal compilation</term>
<term>Large data</term>
<term>Larger data</term>
<term>Light curve</term>
<term>Line shift</term>
<term>Line shifts</term>
<term>Linear relation</term>
<term>Luminosity</term>
<term>Maximum light</term>
<term>Mnras</term>
<term>Negative weight</term>
<term>Negative weights</term>
<term>Nite</term>
<term>Nite input data base</term>
<term>Nite number</term>
<term>Normal group</term>
<term>Normal type</term>
<term>Obvious trends</term>
<term>Original sample</term>
<term>Original spectrum</term>
<term>Peak luminosity</term>
<term>Peculiar type</term>
<term>Phase range</term>
<term>Photometric properties</term>
<term>Physical properties</term>
<term>Positive weight</term>
<term>Principal component</term>
<term>Principal component analysis</term>
<term>Principal component spectra</term>
<term>Principal components</term>
<term>Quasar spectra</term>
<term>Second component</term>
<term>Second weights</term>
<term>Shape data</term>
<term>Shape sample</term>
<term>Small data</term>
<term>Snid data base</term>
<term>Snid program</term>
<term>Solid line</term>
<term>Spectral</term>
<term>Spectral features</term>
<term>Spectral lines</term>
<term>Spectral observations</term>
<term>Spectral templates</term>
<term>Spectral weights</term>
<term>Spectrum</term>
<term>Standard candles</term>
<term>Standard deviation</term>
<term>Standard deviation outlier</term>
<term>Standard deviations</term>
<term>Supernova</term>
<term>Supernova spectra</term>
<term>Template spectra</term>
<term>Thick line</term>
<term>Underluminous</term>
<term>Unusual spectra</term>
<term>Velocity gradient</term>
<term>Velocity gradients</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute magnitude</term>
<term>Average spectrum</term>
<term>Benetti</term>
<term>Blondin</term>
<term>Blondin tonry</term>
<term>Brighter objects</term>
<term>Bullseye</term>
<term>Bullseye plot</term>
<term>Bullseye plots</term>
<term>Clear trend</term>
<term>Continuous catalogue</term>
<term>Continuous data base</term>
<term>Cumulative variance</term>
<term>Data base</term>
<term>Data points</term>
<term>Davis figure</term>
<term>Different colours</term>
<term>Different components</term>
<term>Different luminosities</term>
<term>Different types</term>
<term>Distinct group</term>
<term>Emission peaks</term>
<term>Expansion velocity</term>
<term>Extreme events</term>
<term>Flat data</term>
<term>Flat sample</term>
<term>Francis wills</term>
<term>Good indication</term>
<term>Input spectra</term>
<term>Journal compilation</term>
<term>Large data</term>
<term>Larger data</term>
<term>Light curve</term>
<term>Line shift</term>
<term>Line shifts</term>
<term>Linear relation</term>
<term>Luminosity</term>
<term>Maximum light</term>
<term>Mnras</term>
<term>Negative weight</term>
<term>Negative weights</term>
<term>Nite</term>
<term>Nite input data base</term>
<term>Nite number</term>
<term>Normal group</term>
<term>Normal type</term>
<term>Obvious trends</term>
<term>Original sample</term>
<term>Original spectrum</term>
<term>Peak luminosity</term>
<term>Peculiar type</term>
<term>Phase range</term>
<term>Photometric properties</term>
<term>Physical properties</term>
<term>Positive weight</term>
<term>Principal component</term>
<term>Principal component analysis</term>
<term>Principal component spectra</term>
<term>Principal components</term>
<term>Quasar spectra</term>
<term>Second component</term>
<term>Second weights</term>
<term>Shape data</term>
<term>Shape sample</term>
<term>Small data</term>
<term>Snid data base</term>
<term>Snid program</term>
<term>Solid line</term>
<term>Spectral</term>
<term>Spectral features</term>
<term>Spectral lines</term>
<term>Spectral observations</term>
<term>Spectral templates</term>
<term>Spectral weights</term>
<term>Spectrum</term>
<term>Standard candles</term>
<term>Standard deviation</term>
<term>Standard deviation outlier</term>
<term>Standard deviations</term>
<term>Supernova</term>
<term>Supernova spectra</term>
<term>Template spectra</term>
<term>Thick line</term>
<term>Underluminous</term>
<term>Unusual spectra</term>
<term>Velocity gradient</term>
<term>Velocity gradients</term>
<term>Wide range</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k‐corrections and the training of supernova light‐curve fitters.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>supernova</json:string>
<json:string>principal components</json:string>
<json:string>mnras</json:string>
<json:string>maximum light</json:string>
<json:string>principal component</json:string>
<json:string>journal compilation</json:string>
<json:string>normal type</json:string>
<json:string>benetti</json:string>
<json:string>average spectrum</json:string>
<json:string>blondin</json:string>
<json:string>data base</json:string>
<json:string>underluminous</json:string>
<json:string>nite</json:string>
<json:string>bullseye</json:string>
<json:string>spectral lines</json:string>
<json:string>line shifts</json:string>
<json:string>negative weight</json:string>
<json:string>luminosity</json:string>
<json:string>flat data</json:string>
<json:string>phase range</json:string>
<json:string>velocity gradients</json:string>
<json:string>spectrum</json:string>
<json:string>standard deviation</json:string>
<json:string>peak luminosity</json:string>
<json:string>blondin tonry</json:string>
<json:string>flat sample</json:string>
<json:string>larger data</json:string>
<json:string>nite number</json:string>
<json:string>expansion velocity</json:string>
<json:string>continuous data base</json:string>
<json:string>original sample</json:string>
<json:string>davis figure</json:string>
<json:string>spectral features</json:string>
<json:string>physical properties</json:string>
<json:string>second component</json:string>
<json:string>input spectra</json:string>
<json:string>solid line</json:string>
<json:string>supernova spectra</json:string>
<json:string>data points</json:string>
<json:string>different colours</json:string>
<json:string>bullseye plot</json:string>
<json:string>absolute magnitude</json:string>
<json:string>positive weight</json:string>
<json:string>line shift</json:string>
<json:string>standard candles</json:string>
<json:string>snid data base</json:string>
<json:string>thick line</json:string>
<json:string>original spectrum</json:string>
<json:string>principal component spectra</json:string>
<json:string>shape sample</json:string>
<json:string>continuous catalogue</json:string>
<json:string>standard deviation outlier</json:string>
<json:string>cumulative variance</json:string>
<json:string>different components</json:string>
<json:string>distinct group</json:string>
<json:string>negative weights</json:string>
<json:string>shape data</json:string>
<json:string>light curve</json:string>
<json:string>wide range</json:string>
<json:string>different types</json:string>
<json:string>peculiar type</json:string>
<json:string>different luminosities</json:string>
<json:string>quasar spectra</json:string>
<json:string>extreme events</json:string>
<json:string>normal group</json:string>
<json:string>standard deviations</json:string>
<json:string>photometric properties</json:string>
<json:string>good indication</json:string>
<json:string>obvious trends</json:string>
<json:string>large data</json:string>
<json:string>clear trend</json:string>
<json:string>linear relation</json:string>
<json:string>emission peaks</json:string>
<json:string>brighter objects</json:string>
<json:string>snid program</json:string>
<json:string>velocity gradient</json:string>
<json:string>bullseye plots</json:string>
<json:string>template spectra</json:string>
<json:string>spectral templates</json:string>
<json:string>principal component analysis</json:string>
<json:string>francis wills</json:string>
<json:string>nite input data base</json:string>
<json:string>small data</json:string>
<json:string>second weights</json:string>
<json:string>unusual spectra</json:string>
<json:string>spectral observations</json:string>
<json:string>spectral weights</json:string>
<json:string>spectral</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Diane Cormier</name>
<affiliations>
<json:string>Department of Physics, University of Queensland, QLD 4072, Australia</json:string>
<json:string>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France</json:string>
<json:string>E-mail: diane.cormier@cea.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Tamara M. Davis</name>
<affiliations>
<json:string>Department of Physics, University of Queensland, QLD 4072, Australia</json:string>
<json:string>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark</json:string>
<json:string>E-mail: diane.cormier@cea.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methods: data analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methods: statistical</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>techniques: spectroscopic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>supernovae: general</value>
</json:item>
</subject>
<articleId>
<json:string>MNR17590</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-VQBH3N21-H</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k‐corrections and the training of supernova light‐curve fitters.</abstract>
<qualityIndicators>
<score>9.544</score>
<pdfWordCount>7251</pdfWordCount>
<pdfCharCount>38269</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>212</abstractWordCount>
<abstractCharCount>1229</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>410</volume>
<issue>4</issue>
<pages>
<first>2137</first>
<last>2148</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>2138</json:string>
<json:string>2010</json:string>
<json:string>6150</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Niels Bohr Institute, University of Copenhagen, Denmark</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Observations</json:string>
<json:string>T. M. Davis</json:string>
<json:string>Tamara M. Davis</json:string>
<json:string>Diane Cormier</json:string>
<json:string>J. R. Statistical</json:string>
<json:string>Davis Figure</json:string>
<json:string>Paul Francis</json:string>
<json:string>D. Cormier</json:string>
</persName>
<placeName>
<json:string>Velocity</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Wood-Vasey et al. 2007</json:string>
<json:string>Perlmutter et al. 1999</json:string>
<json:string>Garavini et al. (2005)</json:string>
<json:string>Pastorello et al. (2007)</json:string>
<json:string>Bronder et al. 2008</json:string>
<json:string>Benetti et al. 2005a</json:string>
<json:string>Hicken et al. 2009</json:string>
<json:string>Jha et al. 2006</json:string>
<json:string>Perlmutter & Schmidt 2003</json:string>
<json:string>Connolly et al. 1995</json:string>
<json:string>Mazzali et al. 2007</json:string>
<json:string>Phillips et al. 1999</json:string>
<json:string>Garnavich et al. (2004)</json:string>
<json:string>Kessler et al. 2009</json:string>
<json:string>Hachinger et al. 2006</json:string>
<json:string>Linder 2009</json:string>
<json:string>Suzuki 2006</json:string>
<json:string>Benetti et al. (2005b)</json:string>
<json:string>Filippenko 1997</json:string>
<json:string>James et al. 2006</json:string>
<json:string>Phillips 1993</json:string>
<json:string>Hachinger, Mazzali & Benetti 2006</json:string>
<json:string>Riess et al. 1998</json:string>
<json:string>Suzuki 2005</json:string>
<json:string>Mazzali et al. 2005</json:string>
<json:string>Miknaitis et al. 2007</json:string>
<json:string>Freedman et al. 2009</json:string>
<json:string>Francis et al. 1992</json:string>
<json:string>Nugent et al. 1995</json:string>
<json:string>Francis & Wills 1999</json:string>
<json:string>Francis et al. (1992)</json:string>
<json:string>Blondin et al. 2006</json:string>
<json:string>Phillips et al. (2006)</json:string>
<json:string>Wood-Vasey et al. 2008</json:string>
<json:string>Hsiao et al. 2007</json:string>
<json:string>Krisciunas, Phillips & Suntzeff 2004</json:string>
<json:string>Kowalski et al. 2008</json:string>
<json:string>Blondin & Tonry 2007</json:string>
<json:string>Sarkar et al. 2008</json:string>
<json:string>Astier et al. 2006</json:string>
<json:string>James et al. (2006)</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-VQBH3N21-H</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2010.17590.x</json:string>
</doi>
<id>DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 The Authors. Journal compilation © 2010 RAS</licence>
</availability>
<date type="published" when="2011-02-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<title level="a" type="short">Type Ia supernovae spectral diversity</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Diane</forename>
<surname>Cormier</surname>
</persName>
<affiliation>Department of Physics, University of Queensland, QLD 4072, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>E‐mail: diane.cormier@cea.fr (DC); tamarad@physics.uq.edu.au (TMD)</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Tamara M.</forename>
<surname>Davis</surname>
</persName>
<affiliation>Department of Physics, University of Queensland, QLD 4072, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark
<address>
<country key="DK"></country>
</address>
</affiliation>
<affiliation>E‐mail: diane.cormier@cea.fr (DC); tamarad@physics.uq.edu.au (TMD)</affiliation>
</author>
<idno type="istex">DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164</idno>
<idno type="ark">ark:/67375/WNG-VQBH3N21-H</idno>
<idno type="DOI">10.1111/j.1365-2966.2010.17590.x</idno>
<idno type="unit">MNR17590</idno>
<idno type="toTypesetVersion">file:MNR.MNR17590.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2011.410.issue-4</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">410</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="2137">2137</biblScope>
<biblScope unit="page" to="2148">2148</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-02-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features.</p>
<p>The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in
<hi rend="italic">k</hi>
‐corrections and the training of supernova light‐curve fitters.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">methods: data analysis</term>
<term xml:id="k2">methods: statistical</term>
<term xml:id="k3">techniques: spectroscopic</term>
<term xml:id="k4">supernovae: general</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="02104">
<doi origin="wiley">10.1111/mnr.2011.410.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="410">410</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="2011-02-01">February 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="3" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2010.17590.x</doi>
<idGroup>
<id type="unit" value="MNR17590"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2010 The Authors. Journal compilation © 2010 RAS</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.5.2 mode:FullText" date="2011-06-21"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-10-26"></event>
<event type="publishedOnlineFinalForm" date="2011-01-13"></event>
<event type="firstOnline" date="2010-10-26"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2137">2137</numbering>
<numbering type="pageLast" number="2148">2148</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>diane.cormier@cea.fr</email>
(DC);
<email>tamarad@physics.uq.edu.au</email>
(TMD)</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR17590.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2010 August 23. Received 2010 August 20; in original form 2010 February 27</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="15"></count>
<count type="tableTotal" number="1"></count>
<count type="formulaTotal" number="47"></count>
<count type="referenceTotal" number="39"></count>
<count type="linksCrossRef" number="100"></count>
</countGroup>
<titleGroup>
<title type="main">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<title type="shortAuthors">
<i>D. Cormier and T. M. Davis</i>
</title>
<title type="short">
<i>Type Ia supernovae spectral diversity</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2" corresponding="yes">
<personName>
<givenNames>Diane</givenNames>
<familyName>Cormier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1 #a3" corresponding="yes">
<personName>
<givenNames>Tamara M.</givenNames>
<familyName>Davis</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="AU">
<unparsedAffiliation>Department of Physics, University of Queensland, QLD 4072, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DK">
<unparsedAffiliation>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">methods: data analysis</keyword>
<keyword xml:id="k2">methods: statistical</keyword>
<keyword xml:id="k3">techniques: spectroscopic</keyword>
<keyword xml:id="k4">supernovae: general</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features.</p>
<p>The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in
<i>k</i>
‐corrections and the training of supernova light‐curve fitters.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The study of Type Ia supernovae spectral diversity using principal component analysis</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Type Ia supernovae spectral diversity</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The study of Type Ia supernovae spectral diversity using principal component analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Cormier</namePart>
<affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</affiliation>
<affiliation>Service d'Astrophysique, CEA Saclay, 91191 Gif‐sur‐Yvette, France</affiliation>
<affiliation>E-mail: diane.cormier@cea.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tamara M.</namePart>
<namePart type="family">Davis</namePart>
<affiliation>Department of Physics, University of Queensland, QLD 4072, Australia</affiliation>
<affiliation>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark</affiliation>
<affiliation>E-mail: diane.cormier@cea.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-02-01</dateIssued>
<edition>Accepted 2010 August 23. Received 2010 August 20; in original form 2010 February 27</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">15</extent>
<extent unit="tables">1</extent>
<extent unit="formulas">47</extent>
<extent unit="references">39</extent>
<extent unit="linksCrossRef">100</extent>
</physicalDescription>
<abstract lang="en">In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg‐like SNe seem to form a distinct group, 91T‐like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k‐corrections and the training of supernova light‐curve fitters.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>methods: data analysis</topic>
<topic>methods: statistical</topic>
<topic>techniques: spectroscopic</topic>
<topic>supernovae: general</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>410</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>2137</start>
<end>2148</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164</identifier>
<identifier type="ark">ark:/67375/WNG-VQBH3N21-H</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2010.17590.x</identifier>
<identifier type="ArticleID">MNR17590</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 The Authors. Journal compilation © 2010 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DFF79945DD11753FB0EF110B2EF7BF0BD8DFC164
   |texte=   The study of Type Ia supernovae spectral diversity using principal component analysis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024