Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity

Identifieur interne : 002830 ( Istex/Corpus ); précédent : 002829; suivant : 002831

A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity

Auteurs : R. Gelet ; B. Loret ; N. Khalili

Source :

RBID : ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D

English descriptors

Abstract

The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.

Url:
DOI: 10.1029/2012JB009161

Links to Exploration step

ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<author>
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
<affiliation>
<mods:affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rachel.gelet@gmail.com</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rachel.gelet@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loret, B" sort="Loret, B" uniqKey="Loret B" first="B." last="Loret">B. Loret</name>
<affiliation>
<mods:affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khalili, N" sort="Khalili, N" uniqKey="Khalili N" first="N." last="Khalili">N. Khalili</name>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012JB009161</idno>
<idno type="url">https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002830</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002830</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<author>
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
<affiliation>
<mods:affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rachel.gelet@gmail.com</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rachel.gelet@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loret, B" sort="Loret, B" uniqKey="Loret B" first="B." last="Loret">B. Loret</name>
<affiliation>
<mods:affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khalili, N" sort="Khalili, N" uniqKey="Khalili N" first="N." last="Khalili">N. Khalili</name>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B7</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2012-07">2012-07</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Average fracture aperture</term>
<term>Average fracture spacing</term>
<term>Boundary conditions</term>
<term>Bruel</term>
<term>Chemical potentials</term>
<term>Circulation test</term>
<term>Circulation tests</term>
<term>Coefficient</term>
<term>Complementary energy</term>
<term>Compressibility</term>
<term>Compressive stress</term>
<term>Constitutive</term>
<term>Constitutive equations</term>
<term>Constitutive relations</term>
<term>Convection</term>
<term>Diffusivity</term>
<term>Displacement vector</term>
<term>Dissipation</term>
<term>Double porosity</term>
<term>Dual</term>
<term>Dual porosity</term>
<term>Dual porosity concept</term>
<term>Dual porosity model</term>
<term>Dual porosity model displays</term>
<term>Dual porosity response</term>
<term>Early time</term>
<term>Effective stress</term>
<term>Energy exchange</term>
<term>Energy exchanges</term>
<term>Energy transfer</term>
<term>Fenton</term>
<term>Fenton hill</term>
<term>Fenton hill reservoir</term>
<term>Fgrav fsurf</term>
<term>Field data</term>
<term>Field equations</term>
<term>Field response</term>
<term>Fluid</term>
<term>Fluid densities</term>
<term>Fluid heat transfer</term>
<term>Fluid heat transfer coefficient</term>
<term>Fluid loss</term>
<term>Fluid phase</term>
<term>Fluid phases</term>
<term>Fluid pressures</term>
<term>Fracture</term>
<term>Fracture fluid</term>
<term>Fracture fluid phase</term>
<term>Fracture fluid pressure</term>
<term>Fracture network</term>
<term>Fracture network permeability</term>
<term>Fracture permeability</term>
<term>Fracture porosity</term>
<term>Fracture spacing</term>
<term>Free energy</term>
<term>Gelet</term>
<term>Generalized diffusion</term>
<term>Geothermal</term>
<term>Geothermal reservoirs</term>
<term>Geothermics</term>
<term>Ghassemi</term>
<term>Heat capacity</term>
<term>Heat extraction</term>
<term>Heat transfer</term>
<term>Hydraulic</term>
<term>Hydraulic equilibrium</term>
<term>Inequality</term>
<term>Injection</term>
<term>Injection area</term>
<term>Injection state</term>
<term>Khalili</term>
<term>Large fracture spacings</term>
<term>Large mass transfer</term>
<term>Large pore permeability</term>
<term>Late time</term>
<term>Leakage</term>
<term>Leakage parameter</term>
<term>Loading boundary conditions</term>
<term>Loret</term>
<term>Ltne</term>
<term>Ltne analysis</term>
<term>Ltne model</term>
<term>Mass transfer</term>
<term>Material parameters</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical boundary conditions</term>
<term>Methods geomech</term>
<term>Other hand</term>
<term>Other phases</term>
<term>Parameter</term>
<term>Permeability</term>
<term>Permeation</term>
<term>Plane strain analysis</term>
<term>Pore</term>
<term>Pore fluid</term>
<term>Pore fluid pressure</term>
<term>Pore permeability</term>
<term>Pore pressure</term>
<term>Pore pressure contribution</term>
<term>Pore pressure drop</term>
<term>Pore pressure response</term>
<term>Porosity</term>
<term>Porous block</term>
<term>Porous blocks</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Primary variables</term>
<term>Production wells</term>
<term>Reservoir</term>
<term>Reservoir response</term>
<term>Residual</term>
<term>Rock mech</term>
<term>Rock reservoir</term>
<term>Rock reservoirs</term>
<term>Rosemanowes</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Simulation</term>
<term>Single porosity</term>
<term>Single porosity model</term>
<term>Single porosity response</term>
<term>Skeleton</term>
<term>Small fracture spacings</term>
<term>Solid phase</term>
<term>Solid skeleton</term>
<term>Solid temperature</term>
<term>Spacing</term>
<term>Specific fluid heat transfer coefficient</term>
<term>Specific pore fluid heat transfer coefficient</term>
<term>Stress concept</term>
<term>Tensile stress</term>
<term>Thermal contraction</term>
<term>Thermal depletion</term>
<term>Thermal diffusivity</term>
<term>Thermal equilibria</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic potentials</term>
<term>Thermomechanical</term>
<term>Thermomechanical behavior</term>
<term>Total stress</term>
<term>Total volume</term>
<term>Triple point</term>
<term>Vertical profiles</term>
<term>Volume fraction</term>
<term>Weak form</term>
<term>Zyvoloski</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Average fracture aperture</term>
<term>Average fracture spacing</term>
<term>Boundary conditions</term>
<term>Bruel</term>
<term>Chemical potentials</term>
<term>Circulation test</term>
<term>Circulation tests</term>
<term>Coefficient</term>
<term>Complementary energy</term>
<term>Compressibility</term>
<term>Compressive stress</term>
<term>Constitutive</term>
<term>Constitutive equations</term>
<term>Constitutive relations</term>
<term>Convection</term>
<term>Diffusivity</term>
<term>Displacement vector</term>
<term>Dissipation</term>
<term>Double porosity</term>
<term>Dual</term>
<term>Dual porosity</term>
<term>Dual porosity concept</term>
<term>Dual porosity model</term>
<term>Dual porosity model displays</term>
<term>Dual porosity response</term>
<term>Early time</term>
<term>Effective stress</term>
<term>Energy exchange</term>
<term>Energy exchanges</term>
<term>Energy transfer</term>
<term>Fenton</term>
<term>Fenton hill</term>
<term>Fenton hill reservoir</term>
<term>Fgrav fsurf</term>
<term>Field data</term>
<term>Field equations</term>
<term>Field response</term>
<term>Fluid</term>
<term>Fluid densities</term>
<term>Fluid heat transfer</term>
<term>Fluid heat transfer coefficient</term>
<term>Fluid loss</term>
<term>Fluid phase</term>
<term>Fluid phases</term>
<term>Fluid pressures</term>
<term>Fracture</term>
<term>Fracture fluid</term>
<term>Fracture fluid phase</term>
<term>Fracture fluid pressure</term>
<term>Fracture network</term>
<term>Fracture network permeability</term>
<term>Fracture permeability</term>
<term>Fracture porosity</term>
<term>Fracture spacing</term>
<term>Free energy</term>
<term>Gelet</term>
<term>Generalized diffusion</term>
<term>Geothermal</term>
<term>Geothermal reservoirs</term>
<term>Geothermics</term>
<term>Ghassemi</term>
<term>Heat capacity</term>
<term>Heat extraction</term>
<term>Heat transfer</term>
<term>Hydraulic</term>
<term>Hydraulic equilibrium</term>
<term>Inequality</term>
<term>Injection</term>
<term>Injection area</term>
<term>Injection state</term>
<term>Khalili</term>
<term>Large fracture spacings</term>
<term>Large mass transfer</term>
<term>Large pore permeability</term>
<term>Late time</term>
<term>Leakage</term>
<term>Leakage parameter</term>
<term>Loading boundary conditions</term>
<term>Loret</term>
<term>Ltne</term>
<term>Ltne analysis</term>
<term>Ltne model</term>
<term>Mass transfer</term>
<term>Material parameters</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical boundary conditions</term>
<term>Methods geomech</term>
<term>Other hand</term>
<term>Other phases</term>
<term>Parameter</term>
<term>Permeability</term>
<term>Permeation</term>
<term>Plane strain analysis</term>
<term>Pore</term>
<term>Pore fluid</term>
<term>Pore fluid pressure</term>
<term>Pore permeability</term>
<term>Pore pressure</term>
<term>Pore pressure contribution</term>
<term>Pore pressure drop</term>
<term>Pore pressure response</term>
<term>Porosity</term>
<term>Porous block</term>
<term>Porous blocks</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Primary variables</term>
<term>Production wells</term>
<term>Reservoir</term>
<term>Reservoir response</term>
<term>Residual</term>
<term>Rock mech</term>
<term>Rock reservoir</term>
<term>Rock reservoirs</term>
<term>Rosemanowes</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Simulation</term>
<term>Single porosity</term>
<term>Single porosity model</term>
<term>Single porosity response</term>
<term>Skeleton</term>
<term>Small fracture spacings</term>
<term>Solid phase</term>
<term>Solid skeleton</term>
<term>Solid temperature</term>
<term>Spacing</term>
<term>Specific fluid heat transfer coefficient</term>
<term>Specific pore fluid heat transfer coefficient</term>
<term>Stress concept</term>
<term>Tensile stress</term>
<term>Thermal contraction</term>
<term>Thermal depletion</term>
<term>Thermal diffusivity</term>
<term>Thermal equilibria</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic potentials</term>
<term>Thermomechanical</term>
<term>Thermomechanical behavior</term>
<term>Total stress</term>
<term>Total volume</term>
<term>Triple point</term>
<term>Vertical profiles</term>
<term>Volume fraction</term>
<term>Weak form</term>
<term>Zyvoloski</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>fracture</json:string>
<json:string>permeability</json:string>
<json:string>constitutive</json:string>
<json:string>ltne</json:string>
<json:string>gelet</json:string>
<json:string>porosity</json:string>
<json:string>fenton</json:string>
<json:string>single porosity model</json:string>
<json:string>dual porosity model</json:string>
<json:string>porous blocks</json:string>
<json:string>fracture spacing</json:string>
<json:string>pore</json:string>
<json:string>pore fluid</json:string>
<json:string>geothermal</json:string>
<json:string>effective stress</json:string>
<json:string>mass transfer</json:string>
<json:string>fracture fluid</json:string>
<json:string>constitutive equations</json:string>
<json:string>thermomechanical</json:string>
<json:string>solid phase</json:string>
<json:string>fracture network</json:string>
<json:string>khalili</json:string>
<json:string>hydraulic</json:string>
<json:string>zyvoloski</json:string>
<json:string>fenton hill</json:string>
<json:string>solid skeleton</json:string>
<json:string>matrix</json:string>
<json:string>mech</json:string>
<json:string>field data</json:string>
<json:string>pore pressure</json:string>
<json:string>rosemanowes</json:string>
<json:string>fluid pressures</json:string>
<json:string>vertical profiles</json:string>
<json:string>fenton hill reservoir</json:string>
<json:string>late time</json:string>
<json:string>bruel</json:string>
<json:string>inequality</json:string>
<json:string>fluid phases</json:string>
<json:string>heat transfer</json:string>
<json:string>loret</json:string>
<json:string>material parameters</json:string>
<json:string>geothermics</json:string>
<json:string>dissipation</json:string>
<json:string>double porosity</json:string>
<json:string>other hand</json:string>
<json:string>dual porosity response</json:string>
<json:string>large fracture spacings</json:string>
<json:string>geothermal reservoirs</json:string>
<json:string>specific fluid heat transfer coefficient</json:string>
<json:string>circulation test</json:string>
<json:string>permeation</json:string>
<json:string>coefficient</json:string>
<json:string>early time</json:string>
<json:string>diffusivity</json:string>
<json:string>ghassemi</json:string>
<json:string>fracture fluid pressure</json:string>
<json:string>compressibility</json:string>
<json:string>fluid loss</json:string>
<json:string>fracture porosity</json:string>
<json:string>fluid heat transfer coefficient</json:string>
<json:string>thermal contraction</json:string>
<json:string>volume fraction</json:string>
<json:string>single porosity response</json:string>
<json:string>thermal depletion</json:string>
<json:string>leakage parameter</json:string>
<json:string>rock mech</json:string>
<json:string>rock reservoir</json:string>
<json:string>pore permeability</json:string>
<json:string>triple point</json:string>
<json:string>fracture permeability</json:string>
<json:string>porous medium</json:string>
<json:string>porous media</json:string>
<json:string>thermal equilibria</json:string>
<json:string>heat capacity</json:string>
<json:string>heat extraction</json:string>
<json:string>production wells</json:string>
<json:string>circulation tests</json:string>
<json:string>energy exchanges</json:string>
<json:string>fluid phase</json:string>
<json:string>reservoir</json:string>
<json:string>fluid</json:string>
<json:string>rock reservoirs</json:string>
<json:string>fracture fluid phase</json:string>
<json:string>small fracture spacings</json:string>
<json:string>chemical potentials</json:string>
<json:string>solid temperature</json:string>
<json:string>energy transfer</json:string>
<json:string>thermodynamic potentials</json:string>
<json:string>total stress</json:string>
<json:string>field equations</json:string>
<json:string>boundary conditions</json:string>
<json:string>pore fluid pressure</json:string>
<json:string>dual porosity concept</json:string>
<json:string>specific pore fluid heat transfer coefficient</json:string>
<json:string>pore pressure contribution</json:string>
<json:string>injection state</json:string>
<json:string>convection</json:string>
<json:string>spacing</json:string>
<json:string>skeleton</json:string>
<json:string>leakage</json:string>
<json:string>residual</json:string>
<json:string>other phases</json:string>
<json:string>weak form</json:string>
<json:string>fluid heat transfer</json:string>
<json:string>single porosity</json:string>
<json:string>primary variables</json:string>
<json:string>reservoir response</json:string>
<json:string>complementary energy</json:string>
<json:string>sensitivity analysis</json:string>
<json:string>constitutive relations</json:string>
<json:string>ltne analysis</json:string>
<json:string>second stage</json:string>
<json:string>methods geomech</json:string>
<json:string>field response</json:string>
<json:string>fracture network permeability</json:string>
<json:string>stress concept</json:string>
<json:string>loading boundary conditions</json:string>
<json:string>dual porosity</json:string>
<json:string>thermomechanical behavior</json:string>
<json:string>thermal diffusivity</json:string>
<json:string>ltne model</json:string>
<json:string>compressive stress</json:string>
<json:string>porous block</json:string>
<json:string>displacement vector</json:string>
<json:string>fgrav fsurf</json:string>
<json:string>average fracture spacing</json:string>
<json:string>pore pressure response</json:string>
<json:string>average fracture aperture</json:string>
<json:string>tensile stress</json:string>
<json:string>large pore permeability</json:string>
<json:string>large mass transfer</json:string>
<json:string>generalized diffusion</json:string>
<json:string>plane strain analysis</json:string>
<json:string>dual porosity model displays</json:string>
<json:string>free energy</json:string>
<json:string>fluid densities</json:string>
<json:string>hydraulic equilibrium</json:string>
<json:string>thermal equilibrium</json:string>
<json:string>pore pressure drop</json:string>
<json:string>mechanical boundary conditions</json:string>
<json:string>injection area</json:string>
<json:string>energy exchange</json:string>
<json:string>total volume</json:string>
<json:string>dual</json:string>
<json:string>injection</json:string>
<json:string>simulation</json:string>
<json:string>parameter</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>R. Gelet</name>
<affiliations>
<json:string>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</json:string>
<json:string>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</json:string>
<json:string>E-mail: rachel.gelet@gmail.com</json:string>
<json:string>E-mail: rachel.gelet@gmail.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>B. Loret</name>
<affiliations>
<json:string>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>N. Khalili</name>
<affiliations>
<json:string>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dual porosity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>enhanced geothermal system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fluid loss</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heat exchange</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mass exchange</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thermo‐hydro‐mechanical couplings</value>
</json:item>
</subject>
<articleId>
<json:string>2012JB009161</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8P3R8H6L-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</abstract>
<qualityIndicators>
<score>9.964</score>
<pdfWordCount>15643</pdfWordCount>
<pdfCharCount>86078</pdfCharCount>
<pdfVersion>1.6</pdfVersion>
<pdfPageCount>23</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>247</abstractWordCount>
<abstractCharCount>1636</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>117</volume>
<issue>B7</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>23</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
<json:item>
<value>COMPUTATIONAL GEOPHYSICS</value>
</json:item>
<json:item>
<value>Model verification and validation</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Geomechanics</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Pressure‐temperature‐time paths</value>
</json:item>
<json:item>
<value>PHYSICAL PROPERTIES OF ROCKS</value>
</json:item>
<json:item>
<value>Transport properties</value>
</json:item>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Sydney</json:string>
<json:string>Institut National Polytechnique</json:string>
<json:string>Ministry of Higher</json:string>
<json:string>Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</json:string>
<json:string>New Mexico, USA</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Los Alamos National Laboratory</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Geophys</json:string>
<json:string>N. Khalili</json:string>
<json:string>Spanos</json:string>
<json:string>La Cruz</json:string>
<json:string>R. Gelet</json:string>
<json:string>B. Loret</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Grenoble</json:string>
<json:string>UK</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Brown et al., 1999</json:string>
<json:string>Ghassemi et al., 2008</json:string>
<json:string>Murphy et al. [1977]</json:string>
<json:string>Nield et al., 2002</json:string>
<json:string>Ghassemi et al. [2005]</json:string>
<json:string>Zyvoloski et al.</json:string>
<json:string>[56]</json:string>
<json:string>[1997]</json:string>
<json:string>Belytschko and Hughes, 1983</json:string>
<json:string>[1970]</json:string>
<json:string>Tenma et al. [2008]</json:string>
<json:string>[99]</json:string>
<json:string>Eringen and Ingram, 1965</json:string>
<json:string>Nair et al. [2004]</json:string>
<json:string>[8]</json:string>
<json:string>Wakao and Kaguei, 1982</json:string>
<json:string>[17]</json:string>
<json:string>Ghassemi and Diek, 2002</json:string>
<json:string>Zanotti and Carbonell, 1984</json:string>
<json:string>[1963]</json:string>
<json:string>Koh et al., 2011</json:string>
<json:string>Nair et al., 2004</json:string>
<json:string>Richards et al. [1994]</json:string>
<json:string>Loret and Khalili, 2000a, 2000b</json:string>
<json:string>Jiang et al., 2006</json:string>
<json:string>[98]</json:string>
<json:string>Bower and Zyvoloski, 1997</json:string>
<json:string>Kolditz and Clauser, 1998</json:string>
<json:string>[49]</json:string>
<json:string>Zhang and Roegiers, 2005</json:string>
<json:string>[91]</json:string>
<json:string>Barenblatt et al. [1960]</json:string>
<json:string>DuTeaux et al., 1996</json:string>
<json:string>Bowen and Garcia, 1970</json:string>
<json:string>Khalili and Loret, 2001</json:string>
<json:string>[86]</json:string>
<json:string>Warren and Root, 1963</json:string>
<json:string>Bai and Rogiers, 1994</json:string>
<json:string>Zyvoloski et al., 1981</json:string>
<json:string>[15]</json:string>
<json:string>Murphy et al. [1981]</json:string>
<json:string>Murphy et al., 1981</json:string>
<json:string>Gelet et al., 2011</json:string>
<json:string>[1999]</json:string>
<json:string>Hayashi et al. [1999]</json:string>
<json:string>Masters et al., 2000</json:string>
<json:string>Masters et al. [2000]</json:string>
<json:string>[30]</json:string>
<json:string>[103]</json:string>
<json:string>Zyvoloski et al. [1981]</json:string>
<json:string>Elsworth and Bai, 1992</json:string>
<json:string>Pecker and Deresiewicz, 1973</json:string>
<json:string>[69]</json:string>
<json:string>Hicks et al. [1996]</json:string>
<json:string>Bataillé et al., 2006</json:string>
<json:string>Gelet et al.</json:string>
<json:string>submitted manuscript, 2012</json:string>
<json:string>Khalili and Valliappan, 1996</json:string>
<json:string>[62]</json:string>
<json:string>Kohl et al., 1995</json:string>
<json:string>Richards et al.</json:string>
<json:string>Ghassemi et al. [2008]</json:string>
<json:string>[2]</json:string>
<json:string>[46]</json:string>
<json:string>Loret and Khalili, 2000a</json:string>
<json:string>[1982]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8P3R8H6L-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1029/2012JB009161</json:string>
</doi>
<id>D7C50806504E88303EBF5BE760837E71F81D928D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>©2012. American Geophysical Union. All Rights Reserved.</licence>
</availability>
<date type="published" when="2012-07"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<title level="a" type="short">THM MODEL IN LTNE FOR FRACTURED HDR</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">R.</forename>
<surname>Gelet</surname>
</persName>
<email>rachel.gelet@gmail.com</email>
<affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Corresponding author: R. Gelet, School of Civil Engineering, University of Sydney, Sydney, NSW 2052, Australia. (rachel.gelet@gmail.com)</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">B.</forename>
<surname>Loret</surname>
</persName>
<affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">N.</forename>
<surname>Khalili</surname>
</persName>
<affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">D7C50806504E88303EBF5BE760837E71F81D928D</idno>
<idno type="ark">ark:/67375/WNG-8P3R8H6L-9</idno>
<idno type="DOI">10.1029/2012JB009161</idno>
<idno type="editorialOffice">2012JB009161</idno>
<idno type="society">B07205</idno>
<idno type="unit">JGRB17221</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB17221.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v117.B7</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B7</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2012-07"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb17221-para-0001">The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="jgrb17221-para-0002">
<list style="bulleted">
<item>Thermo‐hydro‐mechanical equations of fractured media</item>
<item>The model is calibrated from the thermal outputs of two HDR reservoirs</item>
<item>Simulation of circulation tests at Fenton Hill HDR reservoir</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrb17221-kwd-0001">dual porosity</term>
<term xml:id="jgrb17221-kwd-0002">enhanced geothermal system</term>
<term xml:id="jgrb17221-kwd-0003">fluid loss</term>
<term xml:id="jgrb17221-kwd-0004">heat exchange</term>
<term xml:id="jgrb17221-kwd-0005">mass exchange</term>
<term xml:id="jgrb17221-kwd-0006">thermo‐hydro‐mechanical couplings</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/5100">PHYSICAL PROPERTIES OF ROCKS</classCode>
<keywords rend="articleCategory">
<term>Chemistry and Physics of Minerals and Rocks/Volcanology</term>
</keywords>
<keywords rend="tocHeading1">
<term>Chemistry and Physics of Minerals and Rocks/Volcanology</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb17221">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="70">
<doi>10.1002/jgrb.v117.B7</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="117">117</numbering>
<numbering type="journalIssue">B7</numbering>
</numberingGroup>
<coverDate startDate="2012-07">July 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="60" status="forIssue">
<doi>10.1029/2012JB009161</doi>
<idGroup>
<id type="editorialOffice" value="2012JB009161"></id>
<id type="society" value="B07205"></id>
<id type="unit" value="JGRB17221"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="23"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
<title type="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">©2012. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-01-15"></event>
<event type="manuscriptRevised" date="2012-05-23"></event>
<event type="manuscriptAccepted" date="2012-05-26"></event>
<event type="firstOnline" date="2012-07-18"></event>
<event type="publishedOnlineFinalForm" date="2012-07-18"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.1; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author: R. Gelet, School of Civil Engineering, University of Sydney, Sydney, NSW 2052, Australia. (
<email>rachel.gelet@gmail.com</email>
)</correspondenceTo>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</subject>
<subject href="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0550">Model verification and validation</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1822">Geomechanics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3652">Pressure‐temperature‐time paths</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5100">PHYSICAL PROPERTIES OF ROCKS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5139">Transport properties</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb17221-cit-0000" type="self">
<author>
<familyName>Gelet</familyName>
,
<givenNames>R.</givenNames>
</author>
,
<author>
<givenNames>B.</givenNames>
<familyName>Loret</familyName>
</author>
, and
<author>
<givenNames>N.</givenNames>
<familyName>Khalili</familyName>
</author>
(
<pubYear year="2012">2012</pubYear>
),
<articleTitle>A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>117</vol>
, B07205, doi:
<accessionId ref="info:doi/10.1029/2012JB009161">10.1029/2012JB009161</accessionId>
.</citation>
</selfCitationGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB17221.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="18000"></count>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="main">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<title type="shortAuthors">GELET ET AL.</title>
<title type="short">THM MODEL IN LTNE FOR FRACTURED HDR</title>
</titleGroup>
<creators>
<creator xml:id="jgrb17221-cr-0001" creatorRole="author" affiliationRef="#jgrb17221-aff-0001 #jgrb17221-aff-0002" corresponding="yes">
<personName>
<givenNames>R.</givenNames>
<familyName>Gelet</familyName>
</personName>
<contactDetails>
<email>rachel.gelet@gmail.com</email>
</contactDetails>
</creator>
<creator xml:id="jgrb17221-cr-0002" creatorRole="author" affiliationRef="#jgrb17221-aff-0001">
<personName>
<givenNames>B.</givenNames>
<familyName>Loret</familyName>
</personName>
</creator>
<creator xml:id="jgrb17221-cr-0003" creatorRole="author" affiliationRef="#jgrb17221-aff-0002">
<personName>
<givenNames>N.</givenNames>
<familyName>Khalili</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="jgrb17221-aff-0001" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb17221-aff-0002" countryCode="AU" type="organization">
<unparsedAffiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb17221-kwd-0001">dual porosity</keyword>
<keyword xml:id="jgrb17221-kwd-0002">enhanced geothermal system</keyword>
<keyword xml:id="jgrb17221-kwd-0003">fluid loss</keyword>
<keyword xml:id="jgrb17221-kwd-0004">heat exchange</keyword>
<keyword xml:id="jgrb17221-kwd-0005">mass exchange</keyword>
<keyword xml:id="jgrb17221-kwd-0006">thermo‐hydro‐mechanical couplings</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0003-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0004-t04"></mediaResource>
<caption>Tab‐delimited Table 4.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0005-t05"></mediaResource>
<caption>Tab‐delimited Table 5.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17221:jgrb17221-sup-0006-t06"></mediaResource>
<caption>Tab‐delimited Table 6.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb17221-para-0001" label="1">The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrb17221-para-0002">
<list style="bulleted">
<listItem>Thermo‐hydro‐mechanical equations of fractured media</listItem>
<listItem>The model is calibrated from the thermal outputs of two HDR reservoirs</listItem>
<listItem>Simulation of circulation tests at Fenton Hill HDR reservoir</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>THM MODEL IN LTNE FOR FRACTURED HDR</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Gelet</namePart>
<affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</affiliation>
<affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</affiliation>
<affiliation>E-mail: rachel.gelet@gmail.com</affiliation>
<affiliation>E-mail: rachel.gelet@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Loret</namePart>
<affiliation>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N.</namePart>
<namePart type="family">Khalili</namePart>
<affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-07</dateIssued>
<dateCaptured encoding="w3cdtf">2012-01-15</dateCaptured>
<dateValid encoding="w3cdtf">2012-05-26</dateValid>
<edition>Gelet, R., B. Loret, and N. Khalili (2012), A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity, J. Geophys. Res., 117, B07205, doi:10.1029/2012JB009161.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">6</extent>
<extent unit="words">18000</extent>
</physicalDescription>
<abstract>The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</abstract>
<abstract type="short">Thermo‐hydro‐mechanical equations of fractured media The model is calibrated from the thermal outputs of two HDR reservoirs Simulation of circulation tests at Fenton Hill HDR reservoir</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.Tab‐delimited Table 4.Tab‐delimited Table 5.Tab‐delimited Table 6.</note>
<subject>
<genre>keywords</genre>
<topic>dual porosity</topic>
<topic>enhanced geothermal system</topic>
<topic>fluid loss</topic>
<topic>heat exchange</topic>
<topic>mass exchange</topic>
<topic>thermo‐hydro‐mechanical couplings</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0550">Model verification and validation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1822">Geomechanics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3652">Pressure‐temperature‐time paths</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5100">PHYSICAL PROPERTIES OF ROCKS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5139">Transport properties</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B7</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>23</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D7C50806504E88303EBF5BE760837E71F81D928D</identifier>
<identifier type="ark">ark:/67375/WNG-8P3R8H6L-9</identifier>
<identifier type="DOI">10.1029/2012JB009161</identifier>
<identifier type="ArticleID">2012JB009161</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2012. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D
   |texte=   A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024