Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)

Identifieur interne : 002764 ( Istex/Corpus ); précédent : 002763; suivant : 002765

Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)

Auteurs : Jean-Pierre Lorand ; Olivier Alard

Source :

RBID : ISTEX:D42EC32022B0C4803EAF08C0D83EFAD622985BB5

English descriptors

Abstract

Abstract: Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.

Url:
DOI: 10.1016/S0016-7037(01)00627-5

Links to Exploration step

ISTEX:D42EC32022B0C4803EAF08C0D83EFAD622985BB5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
<author>
<name sortKey="Lorand, Jean Pierre" sort="Lorand, Jean Pierre" uniqKey="Lorand J" first="Jean-Pierre" last="Lorand">Jean-Pierre Lorand</name>
<affiliation>
<mods:affiliation>E-mail: lorand@mnhn.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D42EC32022B0C4803EAF08C0D83EFAD622985BB5</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0016-7037(01)00627-5</idno>
<idno type="url">https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002764</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002764</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
<author>
<name sortKey="Lorand, Jean Pierre" sort="Lorand, Jean Pierre" uniqKey="Lorand J" first="Jean-Pierre" last="Lorand">Jean-Pierre Lorand</name>
<affiliation>
<mods:affiliation>E-mail: lorand@mnhn.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="ISSN">0016-7037</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="2789">2789</biblScope>
<biblScope unit="page" to="2806">2806</biblScope>
</imprint>
<idno type="ISSN">0016-7037</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0016-7037</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ablation</term>
<term>Abyssal peridotites</term>
<term>Acta</term>
<term>Alard</term>
<term>Anomaly</term>
<term>Ballhaus</term>
<term>Base metal</term>
<term>Bennett</term>
<term>Carbonaceous chondrites</term>
<term>Celessou</term>
<term>Celessou lherzolites</term>
<term>Celessou samples</term>
<term>Chondrite</term>
<term>Chondritic</term>
<term>Chondritic meteorites</term>
<term>Chondritic ratios</term>
<term>Conquere</term>
<term>Core formation</term>
<term>Cosmochim</term>
<term>Earth planet</term>
<term>Equilibration</term>
<term>Error bars</term>
<term>External reproducibility</term>
<term>Fertile lherzolites</term>
<term>Geochim</term>
<term>Harzburgites</term>
<term>Iherzolite</term>
<term>Incompatible</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Laser ablation</term>
<term>Lenoir</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Lorand</term>
<term>Lree</term>
<term>Mackovicky</term>
<term>Macquarie university</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Mbrx</term>
<term>Mbs1</term>
<term>Mbs1 mbs3</term>
<term>Mbs3</term>
<term>Mcdonough</term>
<term>Meisel</term>
<term>Merensky reef</term>
<term>Metasomatic</term>
<term>Metasomatic clinopyroxene</term>
<term>Metasomatism</term>
<term>Modal abundances</term>
<term>Montboissier</term>
<term>Montboissier samples</term>
<term>Montbriancon</term>
<term>Negative anomalies</term>
<term>Northern massif</term>
<term>Orogenic</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Partitioning behavior</term>
<term>Pentlandite</term>
<term>Peridotite</term>
<term>Peridotite xenoliths</term>
<term>Petrol</term>
<term>Plasma mass spectrometry</term>
<term>Poikiloblastic</term>
<term>Poikiloblastic peridotites</term>
<term>Poor reproducibility</term>
<term>Powder aliquots</term>
<term>Preferential partitioning</term>
<term>Primitive mantle</term>
<term>Protogranular</term>
<term>Protogranular xenoliths</term>
<term>Rehkamper</term>
<term>Relative abundances</term>
<term>Reproducibility</term>
<term>Sample mbs1</term>
<term>Siderophile</term>
<term>Siderophile elements</term>
<term>Silicate</term>
<term>Solid solution</term>
<term>Solubility</term>
<term>Solubility limits</term>
<term>Spinel</term>
<term>Spinel peridotite xenoliths</term>
<term>Subcontinental lithospheric mantle</term>
<term>Sylvester</term>
<term>Symbol size</term>
<term>Thin section</term>
<term>Trace element patterns</term>
<term>Upper mantle</term>
<term>Whole rock</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ablation</term>
<term>Abyssal peridotites</term>
<term>Acta</term>
<term>Alard</term>
<term>Anomaly</term>
<term>Ballhaus</term>
<term>Base metal</term>
<term>Bennett</term>
<term>Carbonaceous chondrites</term>
<term>Celessou</term>
<term>Celessou lherzolites</term>
<term>Celessou samples</term>
<term>Chondrite</term>
<term>Chondritic</term>
<term>Chondritic meteorites</term>
<term>Chondritic ratios</term>
<term>Conquere</term>
<term>Core formation</term>
<term>Cosmochim</term>
<term>Earth planet</term>
<term>Equilibration</term>
<term>Error bars</term>
<term>External reproducibility</term>
<term>Fertile lherzolites</term>
<term>Geochim</term>
<term>Harzburgites</term>
<term>Iherzolite</term>
<term>Incompatible</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Laser ablation</term>
<term>Lenoir</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lithospheric</term>
<term>Lithospheric mantle</term>
<term>Lorand</term>
<term>Lree</term>
<term>Mackovicky</term>
<term>Macquarie university</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Mbrx</term>
<term>Mbs1</term>
<term>Mbs1 mbs3</term>
<term>Mbs3</term>
<term>Mcdonough</term>
<term>Meisel</term>
<term>Merensky reef</term>
<term>Metasomatic</term>
<term>Metasomatic clinopyroxene</term>
<term>Metasomatism</term>
<term>Modal abundances</term>
<term>Montboissier</term>
<term>Montboissier samples</term>
<term>Montbriancon</term>
<term>Negative anomalies</term>
<term>Northern massif</term>
<term>Orogenic</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Partitioning behavior</term>
<term>Pentlandite</term>
<term>Peridotite</term>
<term>Peridotite xenoliths</term>
<term>Petrol</term>
<term>Plasma mass spectrometry</term>
<term>Poikiloblastic</term>
<term>Poikiloblastic peridotites</term>
<term>Poor reproducibility</term>
<term>Powder aliquots</term>
<term>Preferential partitioning</term>
<term>Primitive mantle</term>
<term>Protogranular</term>
<term>Protogranular xenoliths</term>
<term>Rehkamper</term>
<term>Relative abundances</term>
<term>Reproducibility</term>
<term>Sample mbs1</term>
<term>Siderophile</term>
<term>Siderophile elements</term>
<term>Silicate</term>
<term>Solid solution</term>
<term>Solubility</term>
<term>Solubility limits</term>
<term>Spinel</term>
<term>Spinel peridotite xenoliths</term>
<term>Subcontinental lithospheric mantle</term>
<term>Sylvester</term>
<term>Symbol size</term>
<term>Thin section</term>
<term>Trace element patterns</term>
<term>Upper mantle</term>
<term>Whole rock</term>
<term>Xenolith</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>xenolith</json:string>
<json:string>lorand</json:string>
<json:string>lherzolites</json:string>
<json:string>peridotite</json:string>
<json:string>mbs1</json:string>
<json:string>massif</json:string>
<json:string>chondritic</json:string>
<json:string>alard</json:string>
<json:string>harzburgites</json:string>
<json:string>spinel</json:string>
<json:string>partitioning</json:string>
<json:string>celessou</json:string>
<json:string>mantle xenoliths</json:string>
<json:string>protogranular</json:string>
<json:string>pentlandite</json:string>
<json:string>ballhaus</json:string>
<json:string>acta</json:string>
<json:string>cosmochim</json:string>
<json:string>laser</json:string>
<json:string>conquere</json:string>
<json:string>montboissier</json:string>
<json:string>geochim</json:string>
<json:string>lithospheric</json:string>
<json:string>chondrite</json:string>
<json:string>petrol</json:string>
<json:string>rehkamper</json:string>
<json:string>mcdonough</json:string>
<json:string>metasomatism</json:string>
<json:string>montbriancon</json:string>
<json:string>base metal</json:string>
<json:string>metasomatic</json:string>
<json:string>lree</json:string>
<json:string>orogenic</json:string>
<json:string>lenoir</json:string>
<json:string>reproducibility</json:string>
<json:string>iherzolite</json:string>
<json:string>siderophile</json:string>
<json:string>lett</json:string>
<json:string>mbrx</json:string>
<json:string>poikiloblastic</json:string>
<json:string>equilibration</json:string>
<json:string>whole rock</json:string>
<json:string>upper mantle</json:string>
<json:string>sample mbs1</json:string>
<json:string>silicate</json:string>
<json:string>anomaly</json:string>
<json:string>meisel</json:string>
<json:string>earth planet</json:string>
<json:string>mackovicky</json:string>
<json:string>mbs3</json:string>
<json:string>solubility</json:string>
<json:string>sylvester</json:string>
<json:string>external reproducibility</json:string>
<json:string>chondritic meteorites</json:string>
<json:string>primitive mantle</json:string>
<json:string>lithospheric mantle</json:string>
<json:string>error bars</json:string>
<json:string>siderophile elements</json:string>
<json:string>peridotite xenoliths</json:string>
<json:string>bennett</json:string>
<json:string>spinel peridotite xenoliths</json:string>
<json:string>powder aliquots</json:string>
<json:string>other hand</json:string>
<json:string>celessou samples</json:string>
<json:string>preferential partitioning</json:string>
<json:string>chondritic ratios</json:string>
<json:string>fertile lherzolites</json:string>
<json:string>solid solution</json:string>
<json:string>solubility limits</json:string>
<json:string>incompatible trace elements</json:string>
<json:string>plasma mass spectrometry</json:string>
<json:string>poikiloblastic peridotites</json:string>
<json:string>abyssal peridotites</json:string>
<json:string>metasomatic clinopyroxene</json:string>
<json:string>celessou lherzolites</json:string>
<json:string>negative anomalies</json:string>
<json:string>mbs1 mbs3</json:string>
<json:string>symbol size</json:string>
<json:string>laser ablation</json:string>
<json:string>modal abundances</json:string>
<json:string>core formation</json:string>
<json:string>northern massif</json:string>
<json:string>protogranular xenoliths</json:string>
<json:string>partitioning behavior</json:string>
<json:string>subcontinental lithospheric mantle</json:string>
<json:string>thin section</json:string>
<json:string>poor reproducibility</json:string>
<json:string>montboissier samples</json:string>
<json:string>carbonaceous chondrites</json:string>
<json:string>merensky reef</json:string>
<json:string>relative abundances</json:string>
<json:string>trace element patterns</json:string>
<json:string>macquarie university</json:string>
<json:string>ablation</json:string>
<json:string>incompatible</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jean-Pierre Lorand</name>
<affiliations>
<json:string>E-mail: lorand@mnhn.fr</json:string>
<json:string>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Olivier Alard</name>
<affiliations>
<json:string>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-3DDXX43K-3</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (>2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN > 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10388</pdfWordCount>
<pdfCharCount>67045</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>586 x 785 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>312</abstractWordCount>
<abstractCharCount>2202</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
<pii>
<json:string>S0016-7037(01)00627-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Geochimica et Cosmochimica Acta</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0016-7037</json:string>
</issn>
<pii>
<json:string>S0016-7037(00)X0138-X</json:string>
</pii>
<volume>65</volume>
<issue>16</issue>
<pages>
<first>2789</first>
<last>2806</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2001</json:string>
<json:string>2200</json:string>
<json:string>33S</json:string>
</date>
<geogName>
<json:string>Al</json:string>
</geogName>
<orgName>
<json:string>Cameroon Line</json:string>
<json:string>Ni Co</json:string>
<json:string>Geoscience Laboratories, Canada</json:string>
<json:string>Department of Earth and Planetary Sciences</json:string>
<json:string>University of Montpelier</json:string>
<json:string>University of Montpellier</json:string>
<json:string>Macquarie University</json:string>
<json:string>Elsevier Science Ltd</json:string>
<json:string>ARC National Key Centre for the Geochemical Evolution and Metallogeny</json:string>
<json:string>CNRS-INSU</json:string>
</orgName>
<orgName_funder>
<json:string>CNRS-INSU</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>F. Frey</json:string>
<json:string>Alard Table</json:string>
<json:string>S. Y. O’Reilly</json:string>
<json:string>Alard Acknowledgments</json:string>
<json:string>Alard Fig</json:string>
<json:string>M. Handler</json:string>
<json:string>N. J. Pearson</json:string>
<json:string>S. Y.O’Reilly</json:string>
<json:string>Michel Gros</json:string>
<json:string>The</json:string>
<json:string>O. Alard</json:string>
<json:string>W. L. Grif</json:string>
<json:string>Analyses</json:string>
<json:string>Liliane Savoyant</json:string>
<json:string>Se</json:string>
<json:string>C. Lawson</json:string>
<json:string>A. Sharma</json:string>
<json:string>P. Lorand</json:string>
<json:string>M. Rehkamper</json:string>
<json:string>S. E. Jackson</json:string>
</persName>
<placeName>
<json:string>Py</json:string>
<json:string>Paris</json:string>
<json:string>Montpellier</json:string>
<json:string>United States</json:string>
<json:string>Australia</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Lorand, 1990</json:string>
<json:string>Coisy and Nicolas, 1978</json:string>
<json:string>Handler and Bennett, 1999</json:string>
<json:string>Xu et al., 1998</json:string>
<json:string>Kogarko et al., 1995</json:string>
<json:string>Dreibus et al., 1995</json:string>
<json:string>Bulanova et al. (1996)</json:string>
<json:string>Van Achterbergh et al., 1999</json:string>
<json:string>Lenoir et al., 2000</json:string>
<json:string>Meisel et al., 2001</json:string>
<json:string>Jackson et al. (1990)</json:string>
<json:string>Lorand et al., 1999, 2000</json:string>
<json:string>Handler and Benett (1999)</json:string>
<json:string>Deloule et al., 1991</json:string>
<json:string>Bedini et al., 1997</json:string>
<json:string>Lorand et al.</json:string>
<json:string>Ballhaus and Ulmer, 1995</json:string>
<json:string>Theriault and Barnes, 1999</json:string>
<json:string>Lorand and Conquere, 1983</json:string>
<json:string>Burton et al., 1999</json:string>
<json:string>Wells, 1977</json:string>
<json:string>Xu et al. (1998)</json:string>
<json:string>Coisy and Nicolas (1978)</json:string>
<json:string>Mercier and Nicolas, 1975</json:string>
<json:string>Lorand et al. (1999)</json:string>
<json:string>Snow and Schmidt, 1998</json:string>
<json:string>Received October 2, 2000</json:string>
<json:string>Brey and Koehler (1990)</json:string>
<json:string>Burton et al. (1999)</json:string>
<json:string>Alard et al. (2000)</json:string>
<json:string>Ionov et al., 1992</json:string>
<json:string>¨ Handler and Bennett, 1999</json:string>
<json:string>Lambert et al., 1998</json:string>
<json:string>Ͻ600°C; fS2 Ͻ 10Ϫ7 atm; Vaughan and Craig, 1978</json:string>
<json:string>Ballhaus and Ryan, 1995</json:string>
<json:string>Wasson and Kallemeyn, 1988</json:string>
<json:string>Meisel et al. (2001)</json:string>
<json:string>Morgan, 1986</json:string>
<json:string>accepted in revised form February 6, 2001</json:string>
<json:string>Barnes et al., 1997</json:string>
<json:string>Ballhaus and Sylvester, 2000</json:string>
<json:string>Downes and Dupuy, 1987</json:string>
<json:string>Eggler and Lorand, 1993</json:string>
<json:string>Yaxley et al., 1991</json:string>
<json:string>Dautria et al., 1992</json:string>
<json:string>Morgan and Baedekker, 1983</json:string>
<json:string>Alard et al., 2000</json:string>
<json:string>Hart and Ravizza (1996)</json:string>
<json:string>Norman et al., 1996</json:string>
<json:string>Pattou et al. (1996)</json:string>
<json:string>after Wasson and Kallemeyn; 1988; Jochum, 1996</json:string>
<json:string>Capobianco and Drake, 1990</json:string>
<json:string>Barnes et al., 1985</json:string>
<json:string>Lorand et al., 1999</json:string>
<json:string>McDonough and Sun (1995)</json:string>
<json:string>Lenoir et al. (2000)</json:string>
<json:string>Pattou et al., 1996</json:string>
<json:string>Li et al., 1996</json:string>
<json:string>Hart and Ravizza, 1996</json:string>
<json:string>Guo et al., 1999</json:string>
<json:string>Rehkamper et al., 1997</json:string>
<json:string>Mitchell and Keays, 1981</json:string>
<json:string>Handler and Bennett (1999)</json:string>
<json:string>Sun et al. (1993)</json:string>
<json:string>Gaetani and Groves, 1999</json:string>
<json:string>Horan and Walker, 2000</json:string>
<json:string>Eggler and Lorand (1993)</json:string>
<json:string>Pattou et al. 1996</json:string>
<json:string>Rehkamper et al. (1997)</json:string>
<json:string>Lorand and Conquere (1983)</json:string>
<json:string>Bedini et al. (1997)</json:string>
<json:string>Mackovicky et al., 1986</json:string>
<json:string>Lorand et al., 1998</json:string>
<json:string>normalizing values after McDonough and Sun, 1995</json:string>
<json:string>Czamanske et al., 1992</json:string>
<json:string>Alard et al., 1996</json:string>
<json:string>Wilson et al., 1996</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-3DDXX43K-3</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - geochemistry & geophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0016-7037(01)00627-5</json:string>
</doi>
<id>D42EC32022B0C4803EAF08C0D83EFAD622985BB5</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Location of the analyzed samples of the Massif Central and Languedoc volcanic fields modified after Coisy and Nicolas (1978) and O. Alard (unpublished data). MBS = Montboissier; MBR = Montbriançon; CRZ = Cerzat; PX = Praclaux; LF = Le Fau en Chambon; PV = Puy de Vergnes; SC = Sauclière; PS = Plan de Célessou. The dashed line represents the limit between the northern and southern Massif Central localities (after Lenoir et al., 2000).</note>
<note type="content">Fig. 2: Incompatible trace element data. (A) Chondrite-normalized REE abundance (normalizing values after McDonough and Sun, 1995). (B) Incompatible trace-element abundance normalized to primitive mantle values (normalizing values after McDonough and Sun, 1995).</note>
<note type="content">Fig. 3: Variation of PGE abundances as a function of Al2O3 contents. Open symbols = lherzolites; closed symbols = harzburgites; diamond = protogranular samples; circles = coarse-granular samples (includes 80-24, the pargasite-bearing lherzolite); open squares = Plan de Céléssou samples. Horizontal lines on each diagram indicate the primitive mantle estimate of McDonough and Sun (1995). Error bars indicate reproducibility determined from replicate analyses; error bars for PSA and MBRX are smaller than symbol size.</note>
<note type="content">Fig. 4: CI-chondrite normalized PGE plots. (A) Protogranular samples. (B) Coarse-granular samples (including Plan du Céléssou lherzolites) (C) Harzburgites. Normalizing values after Jochum (1996).</note>
<note type="content">Fig. 5: Bivariate PGE abundance plots. Except for MBR 11, error bars are smaller than symbol size. Dashed lines delineate the compositional ranges of chondrites (after Wasson and Kallemeyn; 1988; Jochum, 1996; Horan and Walker, 2000). Symbols as in Fig. 3.</note>
<note type="content">Fig. 6: Total PGE contents vs. S and Se contents. Symbols as in Fig. 3.</note>
<note type="content">Fig. 7: Primitive mantle normalized PGE abundance of sulfides by LAM-ICP-MS. (A) Mss (s1, s2) and Mss + Pn + Cp (s3) in sample 80-24 (Le fau en Chambon). (B) Polyphase intergrowth analyses in 4PV 27 and MBR 11 and Mss in 80-448 (Montbriançon samples). (C) Mss (s5), isocubanite (s3) and polyphase intergrowths analyses in MBS1. Primitive mantle values of McDonough and Sun (1995).</note>
<note type="content">Fig. 8: Variation of the LAM- ICP-MS spectra (counts vs. time) for pentlandite-Cu-sulfide grains in MBS-1. Note the covariation of the Pd and Au signal with Cu signal. Ar-flush denotes the switch over from He to Ar as carrier gas in the ablation cell. Background level is reached more efficiently when Ar is used as a “swiping” gas. The curve of 33S has been significantly shifted upward to increase the readability of the figure. Pn = pentlandite (dark gray); Cu-rich = Cu-rich base metal sulfide (light gray).</note>
<note type="content">Fig. 9: Plot of Pd/Ir vs. CeN/SmN and LaN/NbN. Error bars for MBR X are smaller than symbol size. N = primitive mantle normalized (normalizing values after McDonough and Sun, 1995). Symbols as in Figure 3.</note>
<note type="content">Fig. 10: Diagrams of RuN/IrN vs. PtN/IrN and PtN/IrN vs. PdN/IrN for continental peridotites (N = CI-chondrite normalized; normalizing values after Jochum, 1996; Horan and Walker, 2000). Samples being compared are all relatively fertile lherzolites (Al2O3 >2 wt%) to avoid any biasing by melt extraction effects on the PGE ratios, particularly Pd/Ir. Closed symbols indicate the average values for Massif Central lherzolites (triangles), for Cameroon Line xenoliths (inverted triangles; Rehkämper et al., 1997), and for Dish Hill xenoliths (circles; Wilson et al., 1996). Two mean compositions have been calculated for the xenoliths of east Australia analyzed by Handler and Bennett (1999), one for the Southeast Australian samples (diamond) and the other for the North Queensland samples (squares). Open stars denote the average values for Pyrenean orogenic lherzolites (Lorand et al., 1999). Note that Pyrenean orogenic lherzolites and the MC xenoliths were analyzed with the same analytical procedure. Errors bars correspond to one standard deviation from the mean. The different compositional ranges of chondritic meteorites (light gray = H-type ordinary chondrites; dark gray = Eh enstatite chondrites; open field = carbonaceous chondrites) are from Wasson and Kallemeyn (1988), Jochum (1996), and Horan and Walker (2000).</note>
<note type="content">Table 1: Main petrographic features of the analysed samples.a</note>
<note type="content">Table 2: Incompatible trace elements (ppm) (whole-rock analyses by solution ICP-MS).</note>
<note type="content">Table 3: Platinum group elements, Au, S, Se, and Cu in spinel peridotite xenoliths from Massif Central—Languedoc alkali basalts.a</note>
<note type="content">Table 4: In situ LAM-ICPMS analyses of base metal sulfides.a</note>
<note type="content">Table 5: Mass balance calculation of the contribution of base metal sulfides to the PGE budget of MC xenoliths.a</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Jean-Pierre</forename>
<surname>Lorand</surname>
</persName>
<email>lorand@mnhn.fr</email>
<affiliation>Author to whom correspondence should be addressed</affiliation>
<affiliation>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Olivier</forename>
<surname>Alard</surname>
</persName>
<affiliation>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</affiliation>
</author>
<idno type="istex">D42EC32022B0C4803EAF08C0D83EFAD622985BB5</idno>
<idno type="DOI">10.1016/S0016-7037(01)00627-5</idno>
<idno type="PII">S0016-7037(01)00627-5</idno>
</analytic>
<monogr>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="pISSN">0016-7037</idno>
<idno type="PII">S0016-7037(00)X0138-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="2789">2789</biblScope>
<biblScope unit="page" to="2806">2806</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2001-02-06">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="GR2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="GR3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="GR4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="GR7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="GR8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="GR9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="GR10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>GCA</jid>
<aid>2788</aid>
<ce:pii>S0016-7037(01)00627-5</ce:pii>
<ce:doi>10.1016/S0016-7037(01)00627-5</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Jean-Pierre</ce:given-name>
<ce:surname>Lorand</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>lorand@mnhn.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Olivier</ce:given-name>
<ce:surname>Alard</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup>3</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>1</ce:label>
<ce:textfn>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>2</ce:label>
<ce:textfn>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>3</ce:label>
<ce:textfn>Laboratoire de Tectonophysique UMR5568, Université de Montpellier II, Place E. Bataillon, 34095 Montpellier, Cedex 5, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Author to whom correspondence should be addressed</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="2" month="10" year="2000"></ce:date-received>
<ce:date-revised day="6" month="2" year="2001"></ce:date-revised>
<ce:date-accepted day="6" month="2" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/Yb
<ce:inf>N</ce:inf>
< 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Pierre</namePart>
<namePart type="family">Lorand</namePart>
<affiliation>E-mail: lorand@mnhn.fr</affiliation>
<affiliation>Laboratoire de Minéralogie, Muséum National d’Histoire Naturelle, Unité Associée au CNRS, 61 Rue Buffon, 75005 Paris, France</affiliation>
<description>Author to whom correspondence should be addressed</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Alard</namePart>
<affiliation>Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2001-02-06</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.</abstract>
<note type="content">Fig. 1: Location of the analyzed samples of the Massif Central and Languedoc volcanic fields modified after Coisy and Nicolas (1978) and O. Alard (unpublished data). MBS = Montboissier; MBR = Montbriançon; CRZ = Cerzat; PX = Praclaux; LF = Le Fau en Chambon; PV = Puy de Vergnes; SC = Sauclière; PS = Plan de Célessou. The dashed line represents the limit between the northern and southern Massif Central localities (after Lenoir et al., 2000).</note>
<note type="content">Fig. 2: Incompatible trace element data. (A) Chondrite-normalized REE abundance (normalizing values after McDonough and Sun, 1995). (B) Incompatible trace-element abundance normalized to primitive mantle values (normalizing values after McDonough and Sun, 1995).</note>
<note type="content">Fig. 3: Variation of PGE abundances as a function of Al2O3 contents. Open symbols = lherzolites; closed symbols = harzburgites; diamond = protogranular samples; circles = coarse-granular samples (includes 80-24, the pargasite-bearing lherzolite); open squares = Plan de Céléssou samples. Horizontal lines on each diagram indicate the primitive mantle estimate of McDonough and Sun (1995). Error bars indicate reproducibility determined from replicate analyses; error bars for PSA and MBRX are smaller than symbol size.</note>
<note type="content">Fig. 4: CI-chondrite normalized PGE plots. (A) Protogranular samples. (B) Coarse-granular samples (including Plan du Céléssou lherzolites) (C) Harzburgites. Normalizing values after Jochum (1996).</note>
<note type="content">Fig. 5: Bivariate PGE abundance plots. Except for MBR 11, error bars are smaller than symbol size. Dashed lines delineate the compositional ranges of chondrites (after Wasson and Kallemeyn; 1988; Jochum, 1996; Horan and Walker, 2000). Symbols as in Fig. 3.</note>
<note type="content">Fig. 6: Total PGE contents vs. S and Se contents. Symbols as in Fig. 3.</note>
<note type="content">Fig. 7: Primitive mantle normalized PGE abundance of sulfides by LAM-ICP-MS. (A) Mss (s1, s2) and Mss + Pn + Cp (s3) in sample 80-24 (Le fau en Chambon). (B) Polyphase intergrowth analyses in 4PV 27 and MBR 11 and Mss in 80-448 (Montbriançon samples). (C) Mss (s5), isocubanite (s3) and polyphase intergrowths analyses in MBS1. Primitive mantle values of McDonough and Sun (1995).</note>
<note type="content">Fig. 8: Variation of the LAM- ICP-MS spectra (counts vs. time) for pentlandite-Cu-sulfide grains in MBS-1. Note the covariation of the Pd and Au signal with Cu signal. Ar-flush denotes the switch over from He to Ar as carrier gas in the ablation cell. Background level is reached more efficiently when Ar is used as a “swiping” gas. The curve of 33S has been significantly shifted upward to increase the readability of the figure. Pn = pentlandite (dark gray); Cu-rich = Cu-rich base metal sulfide (light gray).</note>
<note type="content">Fig. 9: Plot of Pd/Ir vs. CeN/SmN and LaN/NbN. Error bars for MBR X are smaller than symbol size. N = primitive mantle normalized (normalizing values after McDonough and Sun, 1995). Symbols as in Figure 3.</note>
<note type="content">Fig. 10: Diagrams of RuN/IrN vs. PtN/IrN and PtN/IrN vs. PdN/IrN for continental peridotites (N = CI-chondrite normalized; normalizing values after Jochum, 1996; Horan and Walker, 2000). Samples being compared are all relatively fertile lherzolites (Al2O3 >2 wt%) to avoid any biasing by melt extraction effects on the PGE ratios, particularly Pd/Ir. Closed symbols indicate the average values for Massif Central lherzolites (triangles), for Cameroon Line xenoliths (inverted triangles; Rehkämper et al., 1997), and for Dish Hill xenoliths (circles; Wilson et al., 1996). Two mean compositions have been calculated for the xenoliths of east Australia analyzed by Handler and Bennett (1999), one for the Southeast Australian samples (diamond) and the other for the North Queensland samples (squares). Open stars denote the average values for Pyrenean orogenic lherzolites (Lorand et al., 1999). Note that Pyrenean orogenic lherzolites and the MC xenoliths were analyzed with the same analytical procedure. Errors bars correspond to one standard deviation from the mean. The different compositional ranges of chondritic meteorites (light gray = H-type ordinary chondrites; dark gray = Eh enstatite chondrites; open field = carbonaceous chondrites) are from Wasson and Kallemeyn (1988), Jochum (1996), and Horan and Walker (2000).</note>
<note type="content">Table 1: Main petrographic features of the analysed samples.a</note>
<note type="content">Table 2: Incompatible trace elements (ppm) (whole-rock analyses by solution ICP-MS).</note>
<note type="content">Table 3: Platinum group elements, Au, S, Se, and Cu in spinel peridotite xenoliths from Massif Central—Languedoc alkali basalts.a</note>
<note type="content">Table 4: In situ LAM-ICPMS analyses of base metal sulfides.a</note>
<note type="content">Table 5: Mass balance calculation of the contribution of base metal sulfides to the PGE budget of MC xenoliths.a</note>
<relatedItem type="host">
<titleInfo>
<title>Geochimica et Cosmochimica Acta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>GCA</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20010815</dateIssued>
</originInfo>
<identifier type="ISSN">0016-7037</identifier>
<identifier type="PII">S0016-7037(00)X0138-X</identifier>
<part>
<date>20010815</date>
<detail type="volume">
<number>65</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>16</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>2633</start>
<end>2818</end>
</extent>
<extent unit="pages">
<start>2789</start>
<end>2806</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D42EC32022B0C4803EAF08C0D83EFAD622985BB5</identifier>
<identifier type="ark">ark:/67375/6H6-3DDXX43K-3</identifier>
<identifier type="DOI">10.1016/S0016-7037(01)00627-5</identifier>
<identifier type="PII">S0016-7037(01)00627-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/D42EC32022B0C4803EAF08C0D83EFAD622985BB5/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002764 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002764 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D42EC32022B0C4803EAF08C0D83EFAD622985BB5
   |texte=   Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024