Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing drought stress and trait influence on maize yield under current and future conditions

Identifieur interne : 002656 ( Istex/Corpus ); précédent : 002655; suivant : 002657

Characterizing drought stress and trait influence on maize yield under current and future conditions

Auteurs : Matthew T. Harrison ; François Tardieu ; Zhanshan Dong ; Carlos D. Messina ; Graeme L. Hammer

Source :

RBID : ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365

Abstract

Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.

Url:
DOI: 10.1111/gcb.12381

Links to Exploration step

ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<affiliation>
<mods:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Tasmanian Institute of Agriculture, P.O. Box 3523, TAS, 7320, Burnie, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Matthew.Harrison@utas.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<mods:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
<affiliation>
<mods:affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
<affiliation>
<mods:affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<affiliation>
<mods:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1111/gcb.12381</idno>
<idno type="url">https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002656</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002656</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<affiliation>
<mods:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Tasmanian Institute of Agriculture, P.O. Box 3523, TAS, 7320, Burnie, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Matthew.Harrison@utas.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation>
<mods:affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
<affiliation>
<mods:affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
<affiliation>
<mods:affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<affiliation>
<mods:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">20</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="867">867</biblScope>
<biblScope unit="page" to="878">878</biblScope>
<biblScope unit="page-count">12</biblScope>
<date type="published" when="2014-03">2014-03</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Matthew T. Harrison</name>
<affiliations>
<json:string>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</json:string>
<json:string>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</json:string>
<json:string>Current Address: Tasmanian Institute of Agriculture, P.O. Box 3523, TAS, 7320, Burnie, Australia</json:string>
<json:string>E-mail: Matthew.Harrison@utas.edu.au</json:string>
</affiliations>
</json:item>
<json:item>
<name>François Tardieu</name>
<affiliations>
<json:string>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Zhanshan Dong</name>
<affiliations>
<json:string>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Carlos D. Messina</name>
<affiliations>
<json:string>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Graeme L. Hammer</name>
<affiliations>
<json:string>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>APSIM</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>breeding</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>drought</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>grain</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>trait</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>water stress</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Zea mays</value>
</json:item>
</subject>
<articleId>
<json:string>GCB12381</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-31CJNZZ9-P</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>301</abstractWordCount>
<abstractCharCount>2078</abstractCharCount>
<keywordCount>8</keywordCount>
<score>10</score>
<pdfWordCount>6662</pdfWordCount>
<pdfCharCount>43499</pdfCharCount>
<pdfVersion>1.7</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
</qualityIndicators>
<title>Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Global Change Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
<issn>
<json:string>1354-1013</json:string>
</issn>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<volume>20</volume>
<issue>3</issue>
<pages>
<first>867</first>
<last>878</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Primary Research Article</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/WNG-31CJNZZ9-P</json:string>
</ark>
<publicationDate>2014</publicationDate>
<copyrightDate>2014</copyrightDate>
<doi>
<json:string>10.1111/gcb.12381</json:string>
</doi>
<id>CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>© 2013 John Wiley & Sons Ltd</licence>
</availability>
<date type="published" when="2014-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Matthew T.</forename>
<surname>Harrison</surname>
</persName>
<affiliation>
<orgName>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux</orgName>
<orgName>INRA</orgName>
<orgName>UMR 759</orgName>
<address>
<street>2 Place Viala</street>
<settlement type="city">Montpellier</settlement>
<postCode>34060</postCode>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>Queensland Alliance for Agriculture and Food Innovation</orgName>
<orgName>The University of Queensland</orgName>
<address>
<settlement type="city">Brisbane</settlement>
<postCode>4072</postCode>
<region>QLD</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>Current Address:
<orgName>Tasmanian Institute of Agriculture</orgName>
<address>
<street>P.O. Box 3523</street>
<settlement type="city">Burnie</settlement>
<postCode>7320</postCode>
<region>TAS</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>Correspondence: Matthew T. Harrison, tel. +61 3 6430 4501, fax +61 3 6430 4959, e‐mail: Matthew.Harrison@utas.edu.au</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">François</forename>
<surname>Tardieu</surname>
</persName>
<affiliation>
<orgName>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux</orgName>
<orgName>INRA</orgName>
<orgName>UMR 759</orgName>
<address>
<street>2 Place Viala</street>
<settlement type="city">Montpellier</settlement>
<postCode>34060</postCode>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Zhanshan</forename>
<surname>Dong</surname>
</persName>
<affiliation>
<orgName>Pioneer Hi‐Bred International</orgName>
<orgName>A DuPont Business</orgName>
<address>
<street>7250 NW 62nd Avenue</street>
<settlement type="city">Johnston</settlement>
<postCode>50131</postCode>
<region>IA</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Carlos D.</forename>
<surname>Messina</surname>
</persName>
<affiliation>
<orgName>Pioneer Hi‐Bred International</orgName>
<orgName>A DuPont Business</orgName>
<address>
<street>7250 NW 62nd Avenue</street>
<settlement type="city">Johnston</settlement>
<postCode>50131</postCode>
<region>IA</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Graeme L.</forename>
<surname>Hammer</surname>
</persName>
<affiliation>
<orgName>Queensland Alliance for Agriculture and Food Innovation</orgName>
<orgName>The University of Queensland</orgName>
<address>
<settlement type="city">Brisbane</settlement>
<postCode>4072</postCode>
<region>QLD</region>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<idno type="istex">CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365</idno>
<idno type="ark">ark:/67375/WNG-31CJNZZ9-P</idno>
<idno type="DOI">10.1111/gcb.12381</idno>
<idno type="unit">GCB12381</idno>
<idno type="toTypesetVersion">file:GCB.GCB12381.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2486</idno>
<idno type="book-part-DOI">10.1111/gcb.2014.20.issue-3</idno>
<idno type="product">GCB</idno>
<imprint>
<biblScope unit="vol">20</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="867">867</biblScope>
<biblScope unit="page" to="878">878</biblScope>
<biblScope unit="page-count">12</biblScope>
<date type="published" when="2014-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main" xml:id="gcb12381-abs-0001">
<head>Abstract</head>
<p>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated
<hi rend="fc">
<hi rend="fr">CO
<hi rend="subscript">2</hi>
</hi>
</hi>
on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="gcb12381-kwd-0001">
<hi rend="fc">APSIM</hi>
</term>
<term xml:id="gcb12381-kwd-0002">breeding</term>
<term xml:id="gcb12381-kwd-0003">drought</term>
<term xml:id="gcb12381-kwd-0004">grain</term>
<term xml:id="gcb12381-kwd-0005">model</term>
<term xml:id="gcb12381-kwd-0006">trait</term>
<term xml:id="gcb12381-kwd-0007">water stress</term>
<term xml:id="gcb12381-kwd-0008">
<hi rend="italic">Zea mays</hi>
</term>
</keywords>
<keywords rend="articleCategory">
<term>Primary Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Primary Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:id="gcb12381" xml:lang="en">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
</idGroup>
<titleGroup>
<title sort="GLOBAL CHANGE BIOLOGY" type="main">Global Change Biology</title>
<title type="short">Glob Change Biol</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley">10.1111/gcb.2014.20.issue-3</doi>
<copyright ownership="publisher">Copyright © 2014 John Wiley & Sons Ltd</copyright>
<numberingGroup>
<numbering type="journalVolume" number="20">20</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2014-03">March 2014</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="160" status="forIssue" type="article">
<doi>10.1111/gcb.12381</doi>
<idGroup>
<id type="unit" value="GCB12381"></id>
</idGroup>
<countGroup>
<count number="12" type="pageTotal"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Primary Research Article</title>
<title type="tocHeading1">Primary Research Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2013 John Wiley & Sons Ltd</copyright>
<eventGroup>
<event date="2013-06-25" type="manuscriptReceived"></event>
<event date="2013-08-19" type="manuscriptRevised"></event>
<event date="2013-08-25" type="manuscriptAccepted"></event>
<event agent="SPS" date="2013-09-11" type="xmlCreated"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.2.9 mode:FullText" date="2014-01-28"></event>
<event type="publishedOnlineAccepted" date="2013-09-03"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2014-01-20"></event>
<event type="firstOnline" date="2014-01-20"></event>
<event type="publishedOnlineFinalForm" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-06"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">867</numbering>
<numbering type="pageLast">878</numbering>
</numberingGroup>
<correspondenceTo>Correspondence: Matthew T. Harrison, tel. +61 3 6430 4501, fax +61 3 6430 4959, e‐mail:
<email>Matthew.Harrison@utas.edu.au</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB12381.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<title type="shortAuthors">M. T. Harrison
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator affiliationRef="#gcb12381-aff-0001 #gcb12381-aff-0002" corresponding="yes" creatorRole="author" currentRef="#gcb12381-curr-0001" xml:id="gcb12381-cr-0001">
<personName>
<givenNames>Matthew T.</givenNames>
<familyName>Harrison</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12381-aff-0001" creatorRole="author" xml:id="gcb12381-cr-0002">
<personName>
<givenNames>François</givenNames>
<familyName>Tardieu</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12381-aff-0003" creatorRole="author" xml:id="gcb12381-cr-0003">
<personName>
<givenNames>Zhanshan</givenNames>
<familyName>Dong</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12381-aff-0003" creatorRole="author" xml:id="gcb12381-cr-0004">
<personName>
<givenNames>Carlos D.</givenNames>
<familyName>Messina</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12381-aff-0002" creatorRole="author" xml:id="gcb12381-cr-0005">
<personName>
<givenNames>Graeme L.</givenNames>
<familyName>Hammer</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="gcb12381-aff-0001">
<orgDiv>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux</orgDiv>
<orgName>INRA</orgName>
<orgName>UMR 759</orgName>
<address>
<street>2 Place Viala</street>
<city>Montpellier</city>
<postCode>34060</postCode>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="gcb12381-aff-0002">
<orgDiv>Queensland Alliance for Agriculture and Food Innovation</orgDiv>
<orgName>The University of Queensland</orgName>
<address>
<city>Brisbane</city>
<countryPart>QLD</countryPart>
<postCode>4072</postCode>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="gcb12381-aff-0003">
<orgName>Pioneer Hi‐Bred International</orgName>
<orgName>A DuPont Business</orgName>
<address>
<street>7250 NW 62nd Avenue</street>
<city>Johnston</city>
<countryPart>IA</countryPart>
<postCode>50131</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="gcb12381-curr-0001">
<orgName>Tasmanian Institute of Agriculture</orgName>
<address>
<street>P.O. Box 3523</street>
<city>Burnie</city>
<countryPart>TAS</countryPart>
<postCode>7320</postCode>
<country>Australia</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="gcb12381-kwd-0001">
<fc>APSIM</fc>
</keyword>
<keyword xml:id="gcb12381-kwd-0002">breeding</keyword>
<keyword xml:id="gcb12381-kwd-0003">drought</keyword>
<keyword xml:id="gcb12381-kwd-0004">grain</keyword>
<keyword xml:id="gcb12381-kwd-0005">model</keyword>
<keyword xml:id="gcb12381-kwd-0006">trait</keyword>
<keyword xml:id="gcb12381-kwd-0007">water stress</keyword>
<keyword xml:id="gcb12381-kwd-0008">
<i>Zea mays</i>
</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msword" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0001-DataS1"></mediaResource>
<caption>
<b>Data S1</b>
. Site description and field experiment details used for model parameterization.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0002-FigureS1"></mediaResource>
<caption>
<b>Figure S1</b>
. Average thermal time required for maize crops to reach maturity and long‐term site weather data.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0003-FigureS2a"></mediaResource>
<caption>
<b>Figure S2.</b>
Change in average minimum or maximum July temperature between current and 2050 conditions.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0004-FigureS2b"></mediaResource>
<caption> </caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0005-FigureS3a"></mediaResource>
<caption>
<b>Figure S3.</b>
Changes in mean and distribution of growing season rainfall under current and 2050 conditions.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0006-FigureS3b"></mediaResource>
<caption> </caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0007-FigureS4"></mediaResource>
<caption>
<b>Figure S4.</b>
Simulated sowing dates.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0008-FigureS5"></mediaResource>
<caption>
<b>Figure S5</b>
. Measured and predicted anthesis and physiological maturity dates.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="image/tif" rendition="webOriginal" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0009-FigureS6"></mediaResource>
<caption>
<b>Figure S6</b>
. Yield responses within drought‐stress seasonal patterns across Europe to variation in anthesis‐silking synchrony, maturity and kernel number under 2050 climates.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/pdf" href="urn-x:wiley:13541013:media:gcb12381:gcb12381-sup-0010-FigureS7"></mediaResource>
<caption>
<b>Figure S7.</b>
Relationship between proportional change in yield under climate change and site latitude.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:id="gcb12381-abs-0001">
<title type="main">Abstract</title>
<p>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated
<fc>
<fr>CO
<sub>2</sub>
</fr>
</fc>
on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthew T.</namePart>
<namePart type="family">Harrison</namePart>
<affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</affiliation>
<affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</affiliation>
<affiliation>Current Address: Tasmanian Institute of Agriculture, P.O. Box 3523, TAS, 7320, Burnie, Australia</affiliation>
<affiliation>E-mail: Matthew.Harrison@utas.edu.au</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Tardieu</namePart>
<affiliation>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhanshan</namePart>
<namePart type="family">Dong</namePart>
<affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos D.</namePart>
<namePart type="family">Messina</namePart>
<affiliation>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme L.</namePart>
<namePart type="family">Hammer</namePart>
<affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2014-03</dateIssued>
<dateCreated encoding="w3cdtf">2013-09-11</dateCreated>
<dateCaptured encoding="w3cdtf">2013-06-25</dateCaptured>
<dateValid encoding="w3cdtf">2013-08-25</dateValid>
<copyrightDate encoding="w3cdtf">2014</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</abstract>
<note type="additional physical form">Data S1. Site description and field experiment details used for model parameterization.Figure S1. Average thermal time required for maize crops to reach maturity and long‐term site weather data.Figure S2. Change in average minimum or maximum July temperature between current and 2050 conditions. Figure S3. Changes in mean and distribution of growing season rainfall under current and 2050 conditions. Figure S4. Simulated sowing dates.Figure S5. Measured and predicted anthesis and physiological maturity dates.Figure S6. Yield responses within drought‐stress seasonal patterns across Europe to variation in anthesis‐silking synchrony, maturity and kernel number under 2050 climates.Figure S7. Relationship between proportional change in yield under climate change and site latitude.</note>
<subject>
<genre>keywords</genre>
<topic>APSIM</topic>
<topic>breeding</topic>
<topic>drought</topic>
<topic>grain</topic>
<topic>model</topic>
<topic>trait</topic>
<topic>water stress</topic>
<topic>Zea mays</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Glob Change Biol</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Primary Research Article</topic>
</subject>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2014</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>867</start>
<end>878</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365</identifier>
<identifier type="ark">ark:/67375/WNG-31CJNZZ9-P</identifier>
<identifier type="DOI">10.1111/gcb.12381</identifier>
<identifier type="ArticleID">GCB12381</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2014 John Wiley & Sons Ltd© 2013 John Wiley & Sons Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002656 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002656 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365
   |texte=   Characterizing drought stress and trait influence on maize yield under current and future conditions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024