Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermopower and electrical conductivity of single crystal and polycrystalline CoO

Identifieur interne : 002462 ( Istex/Corpus ); précédent : 002461; suivant : 002463

Thermopower and electrical conductivity of single crystal and polycrystalline CoO

Auteurs : G. Borchardt ; K. Kowalski ; J. Nowotny ; M. Rekas ; W. Weppner

Source :

RBID : ISTEX:C53E57B733C83A7A3C81A64FEC0C6065511F7D46

English descriptors

Abstract

Abstract: Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co1z.sbnd;yO involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–105 Pa.It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (nα) and electrical conductivity (nσ) for both single crystal and polycrystalline CoO increases with temperature. The parameter nα assumes much higher values than nσ for both specimens.The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.The effect of p(O2) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.

Url:
DOI: 10.1016/0955-2219(94)90074-4

Links to Exploration step

ISTEX:C53E57B733C83A7A3C81A64FEC0C6065511F7D46

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
<author>
<name sortKey="Borchardt, G" sort="Borchardt, G" uniqKey="Borchardt G" first="G." last="Borchardt">G. Borchardt</name>
<affiliation>
<mods:affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kowalski, K" sort="Kowalski, K" uniqKey="Kowalski K" first="K." last="Kowalski">K. Kowalski</name>
<affiliation>
<mods:affiliation>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nowotny, J" sort="Nowotny, J" uniqKey="Nowotny J" first="J." last="Nowotny">J. Nowotny</name>
<affiliation>
<mods:affiliation>To whom correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rekas, M" sort="Rekas, M" uniqKey="Rekas M" first="M." last="Rekas">M. Rekas</name>
<affiliation>
<mods:affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weppner, W" sort="Weppner, W" uniqKey="Weppner W" first="W." last="Weppner">W. Weppner</name>
<affiliation>
<mods:affiliation>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C53E57B733C83A7A3C81A64FEC0C6065511F7D46</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1016/0955-2219(94)90074-4</idno>
<idno type="url">https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002462</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002462</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
<author>
<name sortKey="Borchardt, G" sort="Borchardt, G" uniqKey="Borchardt G" first="G." last="Borchardt">G. Borchardt</name>
<affiliation>
<mods:affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kowalski, K" sort="Kowalski, K" uniqKey="Kowalski K" first="K." last="Kowalski">K. Kowalski</name>
<affiliation>
<mods:affiliation>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nowotny, J" sort="Nowotny, J" uniqKey="Nowotny J" first="J." last="Nowotny">J. Nowotny</name>
<affiliation>
<mods:affiliation>To whom correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rekas, M" sort="Rekas, M" uniqKey="Rekas M" first="M." last="Rekas">M. Rekas</name>
<affiliation>
<mods:affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weppner, W" sort="Weppner, W" uniqKey="Weppner W" first="W." last="Weppner">W. Weppner</name>
<affiliation>
<mods:affiliation>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of the European Ceramic Society</title>
<title level="j" type="abbrev">JECS</title>
<idno type="ISSN">0955-2219</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="369">369</biblScope>
<biblScope unit="page" to="376">376</biblScope>
</imprint>
<idno type="ISSN">0955-2219</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0955-2219</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Aliovalent impurities</term>
<term>Band model</term>
<term>Bulk phase</term>
<term>Ceramic material</term>
<term>Chem</term>
<term>Chemical diffusion</term>
<term>Chemical diffusion coefficient</term>
<term>Comparative studies</term>
<term>Conductivity</term>
<term>Defect</term>
<term>Defect structure</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron holes</term>
<term>Electron holes increases</term>
<term>Elektrischen leitfgihigkeit</term>
<term>Equilibration kinetics</term>
<term>Experimental data</term>
<term>Grain boundaries</term>
<term>Grain boundary region</term>
<term>Ideal defect model</term>
<term>Ideal model</term>
<term>Ionization degree</term>
<term>Mobility term</term>
<term>Neue folge</term>
<term>Nonstoichiometric compounds</term>
<term>Nonstoichiometry</term>
<term>Nowotny</term>
<term>Other hand</term>
<term>Oxide composition</term>
<term>Oxide nonstoichiometry</term>
<term>Oxygen activity</term>
<term>Oxygen pressure exponent</term>
<term>Phys</term>
<term>Plenum press</term>
<term>Polaron</term>
<term>Polycrystalline</term>
<term>Polycrystalline specimen</term>
<term>Polycrystalline specimens</term>
<term>Present work</term>
<term>Previous studies</term>
<term>Single crystal</term>
<term>Single crystals</term>
<term>Small polaron mechanism</term>
<term>Strong interactions</term>
<term>Substantial effect</term>
<term>Temperature range</term>
<term>Thermopower</term>
<term>Transport properties</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activation energy</term>
<term>Aliovalent impurities</term>
<term>Band model</term>
<term>Bulk phase</term>
<term>Ceramic material</term>
<term>Chem</term>
<term>Chemical diffusion</term>
<term>Chemical diffusion coefficient</term>
<term>Comparative studies</term>
<term>Conductivity</term>
<term>Defect</term>
<term>Defect structure</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron holes</term>
<term>Electron holes increases</term>
<term>Elektrischen leitfgihigkeit</term>
<term>Equilibration kinetics</term>
<term>Experimental data</term>
<term>Grain boundaries</term>
<term>Grain boundary region</term>
<term>Ideal defect model</term>
<term>Ideal model</term>
<term>Ionization degree</term>
<term>Mobility term</term>
<term>Neue folge</term>
<term>Nonstoichiometric compounds</term>
<term>Nonstoichiometry</term>
<term>Nowotny</term>
<term>Other hand</term>
<term>Oxide composition</term>
<term>Oxide nonstoichiometry</term>
<term>Oxygen activity</term>
<term>Oxygen pressure exponent</term>
<term>Phys</term>
<term>Plenum press</term>
<term>Polaron</term>
<term>Polycrystalline</term>
<term>Polycrystalline specimen</term>
<term>Polycrystalline specimens</term>
<term>Present work</term>
<term>Previous studies</term>
<term>Single crystal</term>
<term>Single crystals</term>
<term>Small polaron mechanism</term>
<term>Strong interactions</term>
<term>Substantial effect</term>
<term>Temperature range</term>
<term>Thermopower</term>
<term>Transport properties</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co1z.sbnd;yO involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–105 Pa.It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (nα) and electrical conductivity (nσ) for both single crystal and polycrystalline CoO increases with temperature. The parameter nα assumes much higher values than nσ for both specimens.The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.The effect of p(O2) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>single crystal</json:string>
<json:string>electrical conductivity</json:string>
<json:string>thermopower</json:string>
<json:string>phys</json:string>
<json:string>nowotny</json:string>
<json:string>nonstoichiometry</json:string>
<json:string>chem</json:string>
<json:string>polaron</json:string>
<json:string>other hand</json:string>
<json:string>grain boundaries</json:string>
<json:string>single crystals</json:string>
<json:string>electron holes</json:string>
<json:string>defect</json:string>
<json:string>band model</json:string>
<json:string>polycrystalline specimen</json:string>
<json:string>electron holes increases</json:string>
<json:string>oxygen pressure exponent</json:string>
<json:string>ideal defect model</json:string>
<json:string>oxygen activity</json:string>
<json:string>electrical properties</json:string>
<json:string>activation energy</json:string>
<json:string>polycrystalline</json:string>
<json:string>experimental data</json:string>
<json:string>comparative studies</json:string>
<json:string>transport properties</json:string>
<json:string>strong interactions</json:string>
<json:string>polycrystalline specimens</json:string>
<json:string>ceramic material</json:string>
<json:string>nonstoichiometric compounds</json:string>
<json:string>bulk phase</json:string>
<json:string>chemical diffusion</json:string>
<json:string>conductivity</json:string>
<json:string>grain boundary region</json:string>
<json:string>aliovalent impurities</json:string>
<json:string>equilibration kinetics</json:string>
<json:string>substantial effect</json:string>
<json:string>oxide composition</json:string>
<json:string>small polaron mechanism</json:string>
<json:string>ideal model</json:string>
<json:string>ionization degree</json:string>
<json:string>present work</json:string>
<json:string>oxide nonstoichiometry</json:string>
<json:string>previous studies</json:string>
<json:string>mobility term</json:string>
<json:string>chemical diffusion coefficient</json:string>
<json:string>defect structure</json:string>
<json:string>temperature range</json:string>
<json:string>elektrischen leitfgihigkeit</json:string>
<json:string>plenum press</json:string>
<json:string>neue folge</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>G. Borchardt</name>
<affiliations>
<json:string>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Kowalski</name>
<affiliations>
<json:string>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Nowotny</name>
<affiliations>
<json:string>To whom correspondence should be addressed.</json:string>
<json:string>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Rekas</name>
<affiliations>
<json:string>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>W. Weppner</name>
<affiliations>
<json:string>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-LFXSR4B2-J</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co1z.sbnd;yO involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–105 Pa.It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (nα) and electrical conductivity (nσ) for both single crystal and polycrystalline CoO increases with temperature. The parameter nα assumes much higher values than nσ for both specimens.The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.The effect of p(O2) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>143</abstractWordCount>
<abstractCharCount>1007</abstractCharCount>
<keywordCount>0</keywordCount>
<score>7.661</score>
<pdfWordCount>3945</pdfWordCount>
<pdfCharCount>23618</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>576 x 828 pts</pdfPageSize>
</qualityIndicators>
<title>Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
<pii>
<json:string>0955-2219(94)90074-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of the European Ceramic Society</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1994</publicationDate>
<issn>
<json:string>0955-2219</json:string>
</issn>
<pii>
<json:string>S0955-2219(00)X0138-0</json:string>
</pii>
<volume>14</volume>
<issue>4</issue>
<pages>
<first>369</first>
<last>376</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1370</json:string>
<json:string>1994</json:string>
<json:string>1273</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Commission of European Communities</json:string>
<json:string>Department of Industry, Technology and Commerce</json:string>
<json:string>Christian Albrechts University</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Nancy Cedex</json:string>
<json:string>K. Kowalski</json:string>
<json:string>The</json:string>
<json:string>J. Nowotny</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Kiel</json:string>
<json:string>Australia</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>G. Borchardt et al.</json:string>
<json:string>Fryt et al.</json:string>
<json:string>Petot-Ervas et al.</json:string>
<json:string>Nowotny et al.</json:string>
<json:string>Laboratory of Electronic Materials, Technical University of Clausthal, 3392</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-LFXSR4B2-J</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, ceramics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - materials</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Ceramics and Composites</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - physique</json:string>
<json:string>4 - etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1016/0955-2219(94)90074-4</json:string>
</doi>
<id>C53E57B733C83A7A3C81A64FEC0C6065511F7D46</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1994</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
<author xml:id="author-0000">
<persName>
<forename type="first">G.</forename>
<surname>Borchardt</surname>
</persName>
<affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">K.</forename>
<surname>Kowalski</surname>
</persName>
<affiliation>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J.</forename>
<surname>Nowotny</surname>
</persName>
<affiliation>To whom correspondence should be addressed.</affiliation>
<affiliation>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">M.</forename>
<surname>Rekas</surname>
</persName>
<affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">W.</forename>
<surname>Weppner</surname>
</persName>
<affiliation>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</affiliation>
</author>
<idno type="istex">C53E57B733C83A7A3C81A64FEC0C6065511F7D46</idno>
<idno type="DOI">10.1016/0955-2219(94)90074-4</idno>
<idno type="PII">0955-2219(94)90074-4</idno>
</analytic>
<monogr>
<title level="j">Journal of the European Ceramic Society</title>
<title level="j" type="abbrev">JECS</title>
<idno type="pISSN">0955-2219</idno>
<idno type="PII">S0955-2219(00)X0138-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994"></date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="369">369</biblScope>
<biblScope unit="page" to="376">376</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co1z.sbnd;yO involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–105 Pa.It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (nα) and electrical conductivity (nσ) for both single crystal and polycrystalline CoO increases with temperature. The parameter nα assumes much higher values than nσ for both specimens.The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.The effect of p(O2) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.</p>
</abstract>
<abstract xml:lang="de">
<p>Zusammenfassung: Die elektrische Leitfähigkeit und die Thermokraft (Seebeck-Effekt) von undotierten Co1z.sbnd;yOEin- und Vielkristallproben wurden für den Temperaturbereich 1223–1473 K bei einem Sauerstoffpartialdruck zwischen 10–105 Pa untersucht.Dabei zeigte sich, daß der Kehrwert des Sauerstoffdruckexponenten, bestimmt aus der Thermokraft (nα) und der elektrischen Leitfähigkeit (nσ), sowohl für CoOEin- als auch für CoO-Vielkristallproben mit der Temperatur zunimmt. Für beide Probenarten erreicht der Parameter nα wesentlich höhere Werte als nσ.Die Mobilität der Elektronenfehlstellen nimmt mit der Nichtstöchiometrie (y) sowohl für Ein- als auch für Vielkristallproben zu.Augrund der Variation der elektrischen Leitfähigkeit mit der Temperatur wurde geschlossen, daß die Leitfähigkeit in CoO entsprechend dem ‘hopping’ Modell und nicht dem ‘band’ Modell erfolgt.Der Effekt von p(O2) auf den Exponenten des Sauerstoffdruckes wurde bezüglich der Wechselwirkung zwischen den Defekten diskutiert.</p>
</abstract>
<abstract xml:lang="fr">
<p>Résumé: Nous avons procédé à une étude comparative d'échantillons mono et polycristallins de Co1z.sbnd;yO, non dopés, du point de vue de la conductivitéélectrique et du comportement thermoélectrique (effect Seebeck), dans la gamme de températures 1223–1473 K et sous une pression partielle d'oxygène variant de 10 à 105 Pa.Nous avons observé que l'inverse de l'exposant de la pression d'oxygène, déterminé par la constante thermoélectrique (nα) et la conductivité électrique (nσ) pour les échantillons monocristallins ou polycristallins augmente avec la température. Le paramètre nα suppose des valeurs plus élevées que le paramètre nσ ceci pour les deux types d'échantillons.La mobilité des trous d'électrons augmente avec l'écart à la stoechiométrie (y) pour les deux catégories.La variation de la conductivité avec la température nous conduit à penser que la conduction dans CoO est une conduction par sauts plutôt qu'une conduction de bande.L'effet de p(O2) sur la mobilité des trous, aussi bien que sur l'exposant de la variation de la pression d'oxygène est examiné en termes des interactions entre les défauts.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1994">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>JECS</jid>
<aid>94900744</aid>
<ce:pii>0955-2219(94)90074-4</ce:pii>
<ce:doi>10.1016/0955-2219(94)90074-4</ce:doi>
<ce:copyright type="unknown" year="1994"></ce:copyright>
</item-info>
<head>
<ce:title>Thermopower and electrical conductivity of single crystal and polycrystalline CoO</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Borchardt</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Kowalski</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Nowotny</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Rekas</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>W.</ce:given-name>
<ce:surname>Weppner</ce:surname>
<ce:cross-ref refid="AFF4">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF4">
<ce:label>d</ce:label>
<ce:textfn>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>To whom correspondence should be addressed.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="30" month="6" year="1993"></ce:date-received>
<ce:date-accepted day="24" month="4" year="1994"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co
<ce:inf>1z.sbnd;y</ce:inf>
O involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–10
<ce:sup>5</ce:sup>
Pa.</ce:simple-para>
<ce:simple-para>It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (n
<ce:inf>α</ce:inf>
) and electrical conductivity (n
<ce:inf>σ</ce:inf>
) for both single crystal and polycrystalline CoO increases with temperature. The parameter n
<ce:inf>α</ce:inf>
assumes much higher values than n
<ce:inf>σ</ce:inf>
for both specimens.</ce:simple-para>
<ce:simple-para>The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.</ce:simple-para>
<ce:simple-para>Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.</ce:simple-para>
<ce:simple-para>The effect of p(O
<ce:inf>2</ce:inf>
) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:abstract xml:lang="de">
<ce:section-title>Zusammenfassung</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Die elektrische Leitfähigkeit und die Thermokraft (Seebeck-Effekt) von undotierten Co
<ce:inf>1z.sbnd;y</ce:inf>
OEin- und Vielkristallproben wurden für den Temperaturbereich 1223–1473 K bei einem Sauerstoffpartialdruck zwischen 10–10
<ce:sup>5</ce:sup>
Pa untersucht.</ce:simple-para>
<ce:simple-para>Dabei zeigte sich, daß der Kehrwert des Sauerstoffdruckexponenten, bestimmt aus der Thermokraft (n
<ce:inf>α</ce:inf>
) und der elektrischen Leitfähigkeit (n
<ce:inf>σ</ce:inf>
), sowohl für CoOEin- als auch für CoO-Vielkristallproben mit der Temperatur zunimmt. Für beide Probenarten erreicht der Parameter n
<ce:inf>α</ce:inf>
wesentlich höhere Werte als n
<ce:inf>σ</ce:inf>
.</ce:simple-para>
<ce:simple-para>Die Mobilität der Elektronenfehlstellen nimmt mit der Nichtstöchiometrie (y) sowohl für Ein- als auch für Vielkristallproben zu.</ce:simple-para>
<ce:simple-para>Augrund der Variation der elektrischen Leitfähigkeit mit der Temperatur wurde geschlossen, daß die Leitfähigkeit in CoO entsprechend dem ‘hopping’ Modell und nicht dem ‘band’ Modell erfolgt.</ce:simple-para>
<ce:simple-para>Der Effekt von p(O
<ce:inf>2</ce:inf>
) auf den Exponenten des Sauerstoffdruckes wurde bezüglich der Wechselwirkung zwischen den Defekten diskutiert.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:abstract xml:lang="fr">
<ce:section-title>Résumé</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Nous avons procédé à une étude comparative d'échantillons mono et polycristallins de Co
<ce:inf>1z.sbnd;y</ce:inf>
O, non dopés, du point de vue de la conductivitéélectrique et du comportement thermoélectrique (effect Seebeck), dans la gamme de températures 1223–1473 K et sous une pression partielle d'oxygène variant de 10 à 10
<ce:sup>5</ce:sup>
Pa.</ce:simple-para>
<ce:simple-para>Nous avons observé que l'inverse de l'exposant de la pression d'oxygène, déterminé par la constante thermoélectrique (n
<ce:inf>α</ce:inf>
) et la conductivité électrique (n
<ce:inf>σ</ce:inf>
) pour les échantillons monocristallins ou polycristallins augmente avec la température. Le paramètre n
<ce:inf>α</ce:inf>
suppose des valeurs plus élevées que le paramètre n
<ce:inf>σ</ce:inf>
ceci pour les deux types d'échantillons.</ce:simple-para>
<ce:simple-para>La mobilité des trous d'électrons augmente avec l'écart à la stoechiométrie (y) pour les deux catégories.</ce:simple-para>
<ce:simple-para>La variation de la conductivité avec la température nous conduit à penser que la conduction dans CoO est une conduction par sauts plutôt qu'une conduction de bande.</ce:simple-para>
<ce:simple-para>L'effet de p(O
<ce:inf>2</ce:inf>
) sur la mobilité des trous, aussi bien que sur l'exposant de la variation de la pression d'oxygène est examiné en termes des interactions entre les défauts.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Thermopower and electrical conductivity of single crystal and polycrystalline CoO</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Borchardt</namePart>
<affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Kowalski</namePart>
<affiliation>Université Nancy I, Laboratoire de Chimie du Solide Minéral, 54506 Vandoeuvre-les-Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Nowotny</namePart>
<affiliation>To whom correspondence should be addressed.</affiliation>
<affiliation>Australian Nuclear Science & Technology Organisation, Advanced Materials Program, Lucas Heights, NSW 2234, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Rekas</namePart>
<affiliation>Laboratory of Electronic Materials, Technical University of Clausthal, 3392 Clausthal-Zellerfeld, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W.</namePart>
<namePart type="family">Weppner</namePart>
<affiliation>Christian Albrechts University, Chair for Sensors and Solid State Ionics, 24098 Kiel, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Comparative studies of both electrical conductivity and thermopower (Seebeck effect) were carried out for undoped Co1z.sbnd;yO involving both single crystal and polycrystalline specimens within the temperature range 1223–1473 K and under oxygen partial pressure range 10–105 Pa.It was observed that the reciprocal of oxygen pressure exponent determined by thermopower (nα) and electrical conductivity (nσ) for both single crystal and polycrystalline CoO increases with temperature. The parameter nα assumes much higher values than nσ for both specimens.The mobility of electron holes increases with non-stoichiometry (y) for both the single crystal and the polycrystalline specimen.Based on the electrical conductivity data on temperatures it was concluded that conduction in CoO occurs according to the hopping model rather than the band model.The effect of p(O2) on the exponent of the oxygen pressure dependence have been considered in terms of interactions between the defects in this region.</abstract>
<abstract lang="de">Zusammenfassung: Die elektrische Leitfähigkeit und die Thermokraft (Seebeck-Effekt) von undotierten Co1z.sbnd;yOEin- und Vielkristallproben wurden für den Temperaturbereich 1223–1473 K bei einem Sauerstoffpartialdruck zwischen 10–105 Pa untersucht.Dabei zeigte sich, daß der Kehrwert des Sauerstoffdruckexponenten, bestimmt aus der Thermokraft (nα) und der elektrischen Leitfähigkeit (nσ), sowohl für CoOEin- als auch für CoO-Vielkristallproben mit der Temperatur zunimmt. Für beide Probenarten erreicht der Parameter nα wesentlich höhere Werte als nσ.Die Mobilität der Elektronenfehlstellen nimmt mit der Nichtstöchiometrie (y) sowohl für Ein- als auch für Vielkristallproben zu.Augrund der Variation der elektrischen Leitfähigkeit mit der Temperatur wurde geschlossen, daß die Leitfähigkeit in CoO entsprechend dem ‘hopping’ Modell und nicht dem ‘band’ Modell erfolgt.Der Effekt von p(O2) auf den Exponenten des Sauerstoffdruckes wurde bezüglich der Wechselwirkung zwischen den Defekten diskutiert.</abstract>
<abstract lang="fr">Résumé: Nous avons procédé à une étude comparative d'échantillons mono et polycristallins de Co1z.sbnd;yO, non dopés, du point de vue de la conductivitéélectrique et du comportement thermoélectrique (effect Seebeck), dans la gamme de températures 1223–1473 K et sous une pression partielle d'oxygène variant de 10 à 105 Pa.Nous avons observé que l'inverse de l'exposant de la pression d'oxygène, déterminé par la constante thermoélectrique (nα) et la conductivité électrique (nσ) pour les échantillons monocristallins ou polycristallins augmente avec la température. Le paramètre nα suppose des valeurs plus élevées que le paramètre nσ ceci pour les deux types d'échantillons.La mobilité des trous d'électrons augmente avec l'écart à la stoechiométrie (y) pour les deux catégories.La variation de la conductivité avec la température nous conduit à penser que la conduction dans CoO est une conduction par sauts plutôt qu'une conduction de bande.L'effet de p(O2) sur la mobilité des trous, aussi bien que sur l'exposant de la variation de la pression d'oxygène est examiné en termes des interactions entre les défauts.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of the European Ceramic Society</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JECS</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
</originInfo>
<identifier type="ISSN">0955-2219</identifier>
<identifier type="PII">S0955-2219(00)X0138-0</identifier>
<part>
<date>1994</date>
<detail type="volume">
<number>14</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>281</start>
<end>381</end>
</extent>
<extent unit="pages">
<start>369</start>
<end>376</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C53E57B733C83A7A3C81A64FEC0C6065511F7D46</identifier>
<identifier type="ark">ark:/67375/6H6-LFXSR4B2-J</identifier>
<identifier type="DOI">10.1016/0955-2219(94)90074-4</identifier>
<identifier type="PII">0955-2219(94)90074-4</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C53E57B733C83A7A3C81A64FEC0C6065511F7D46/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C53E57B733C83A7A3C81A64FEC0C6065511F7D46
   |texte=   Thermopower and electrical conductivity of single crystal and polycrystalline CoO
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024