Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical and experimental studies of the rolling sphere wake

Identifieur interne : 001F69 ( Istex/Corpus ); précédent : 001F68; suivant : 001F70

Numerical and experimental studies of the rolling sphere wake

Auteurs : B. E. Stewart ; M. C. Thompson ; T. Leweke ; K. Hourigan

Source :

RBID : ISTEX:A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB

Abstract

A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.

Url:
DOI: 10.1017/S0022112009992072

Links to Exploration step

ISTEX:A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Numerical and experimental studies of the rolling sphere wake</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: stewart.bronwyn01@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1017/S0022112009992072</idno>
<idno type="url">https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F69</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Numerical and experimental studies of the rolling sphere wake</title>
<author>
<name sortKey="Stewart, B E" sort="Stewart, B E" uniqKey="Stewart B" first="B. E." last="Stewart">B. E. Stewart</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: stewart.bronwyn01@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<mods:affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<mods:affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-01-25">2010-01-25</date>
<biblScope unit="volume">643</biblScope>
<biblScope unit="page" from="137">137</biblScope>
<biblScope unit="page" to="162">162</biblScope>
</imprint>
<idno type="ISSN">0022-1120</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</div>
</front>
</TEI>
<istex>
<corpusName>cambridge</corpusName>
<author>
<json:item>
<name>B. E. STEWART</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
<json:string>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</json:string>
<json:string>E-mail: stewart.bronwyn01@gmail.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. C. THOMPSON</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. LEWEKE</name>
<affiliations>
<json:string>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. HOURIGAN</name>
<affiliations>
<json:string>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
<json:string>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>99207</json:string>
</articleId>
<arkIstex>ark:/67375/6GQ-8BZH6MTJ-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 > Re > 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>234</abstractWordCount>
<abstractCharCount>1426</abstractCharCount>
<keywordCount>0</keywordCount>
<score>9.808</score>
<pdfWordCount>10383</pdfWordCount>
<pdfCharCount>55335</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>26</pdfPageCount>
<pdfPageSize>493.228 x 700.157 pts</pdfPageSize>
</qualityIndicators>
<title>Numerical and experimental studies of the rolling sphere wake</title>
<pii>
<json:string>S0022112009992072</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Fluid Mechanics</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-1120</json:string>
</issn>
<eissn>
<json:string>1469-7645</json:string>
</eissn>
<publisherId>
<json:string>FLM</json:string>
</publisherId>
<volume>643</volume>
<pages>
<first>137</first>
<last>162</last>
<total>26</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/6GQ-8BZH6MTJ-X</json:string>
</ark>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1017/S0022112009992072</json:string>
</doi>
<id>A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Numerical and experimental studies of the rolling sphere wake</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<availability>
<licence>
<p>Copyright © Cambridge University Press 2010</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</p>
</availability>
<date>2010</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Numerical and experimental studies of the rolling sphere wake</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">B. E.</forename>
<surname>STEWART</surname>
</persName>
<email>stewart.bronwyn01@gmail.com</email>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">M. C.</forename>
<surname>THOMPSON</surname>
</persName>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">T.</forename>
<surname>LEWEKE</surname>
</persName>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">K.</forename>
<surname>HOURIGAN</surname>
</persName>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
</author>
<idno type="istex">A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB</idno>
<idno type="ark">ark:/67375/6GQ-8BZH6MTJ-X</idno>
<idno type="DOI">10.1017/S0022112009992072</idno>
<idno type="PII">S0022112009992072</idno>
<idno type="article-id">99207</idno>
</analytic>
<monogr>
<title level="j">Journal of Fluid Mechanics</title>
<title level="j" type="abbrev">J. Fluid Mech.</title>
<idno type="pISSN">0022-1120</idno>
<idno type="eISSN">1469-7645</idno>
<idno type="publisher-id">FLM</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>Cambridge, UK</pubPlace>
<date type="published" when="2010-01-25"></date>
<biblScope unit="volume">643</biblScope>
<biblScope unit="page" from="137">137</biblScope>
<biblScope unit="page" to="162">162</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract style="normal">
<p>A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2010-01-25">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus cambridge not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.2 20060430//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article dtd-version="2.2" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">FLM</journal-id>
<journal-title>Journal of Fluid Mechanics</journal-title>
<abbrev-journal-title>J. Fluid Mech.</abbrev-journal-title>
<issn pub-type="ppub">0022-1120</issn>
<issn pub-type="epub">1469-7645</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1017/S0022112009992072</article-id>
<article-id pub-id-type="pii">S0022112009992072</article-id>
<article-id pub-id-type="publisher-id">99207</article-id>
<title-group>
<article-title>Numerical and experimental studies of the rolling sphere wake</article-title>
<alt-title alt-title-type="right-running">Numerical and experimental studies of the rolling sphere wake</alt-title>
<alt-title alt-title-type="left-running">B. E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>STEWART</surname>
<given-names>B. E.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor001"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>THOMPSON</surname>
<given-names>M. C.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LEWEKE</surname>
<given-names>T.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>HOURIGAN</surname>
<given-names>K.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>
<sup>1</sup>
</label>
<addr-line>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR)</addr-line>
,
<addr-line>Department of Mechanical and Aerospace Engineering</addr-line>
,
<institution>Monash University</institution>
,
<addr-line>Melbourne</addr-line>
,
<addr-line>Victoria 3800</addr-line>
,
<country>Australia</country>
</aff>
<aff id="aff002">
<label>
<sup>2</sup>
</label>
<addr-line>Institut de Recherche sur les Phénomènes Hors Equilibre</addr-line>
,
<institution>CNRS/Universités Aix-Marseille</institution>
,
<addr-line>49 rue Frédéric Joliot-Curie</addr-line>
,
<addr-line>BP 146</addr-line>
,
<addr-line>F-13384 Marseille cedex 13</addr-line>
,
<country>France</country>
</aff>
<aff id="aff003">
<label>
<sup>3</sup>
</label>
<addr-line>Division of Biological Engineering</addr-line>
,
<institution>Monash University</institution>
,
<addr-line>Melbourne</addr-line>
,
<addr-line>Victoria 3800</addr-line>
,
<country>Australia</country>
</aff>
<author-notes>
<corresp id="cor001">
<label></label>
Email address for correspondence:
<email xlink:href="stewart.bronwyn01@gmail.com">stewart.bronwyn01@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>25</day>
<month>01</month>
<year>2010</year>
</pub-date>
<volume>643</volume>
<fpage seq="8">137</fpage>
<lpage>162</lpage>
<history>
<date date-type="received">
<day>01</day>
<month>03</month>
<year>2009</year>
</date>
<date date-type="rev-recd">
<day>05</day>
<month>09</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>07</day>
<month>09</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © Cambridge University Press 2010</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Cambridge University Press</copyright-holder>
</permissions>
<abstract abstract-type="normal">
<p>A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 <
<italic>Re</italic>
< 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</p>
</abstract>
<counts>
<page-count count="26"></page-count>
</counts>
<custom-meta-wrap>
<custom-meta>
<meta-name>pdf</meta-name>
<meta-value>S0022112009992072a.pdf</meta-value>
</custom-meta>
<custom-meta>
<meta-name>dispart</meta-name>
<meta-value>Papers</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<title>REFERENCES</title>
<ref>
<citation citation-type="journal" id="ref1">
<name>
<surname>Ashmore</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>del Pino</surname>
<given-names>C.</given-names>
</name>
&
<name>
<surname>Mullin</surname>
<given-names>T.</given-names>
</name>
<year>2005</year>
<article-title>Cavitation in a lubrication flow between a moving sphere and a boundary</article-title>
.
<source>Phys. Rev. Lett.</source>
<volume>94</volume>
, 124501 (
<fpage>1</fpage>
<lpage>4</lpage>
).</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref2">
<name>
<surname>Cherukat</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>McLaughlin</surname>
<given-names>J. B.</given-names>
</name>
<year>1990</year>
<article-title>Wall-induced lift on a sphere</article-title>
.
<source>Intl J. Multiphase Flow</source>
<volume>16</volume>
<issue>(5)</issue>
,
<fpage>899</fpage>
<lpage>907</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref3">
<name>
<surname>Cherukat</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>McLaughlin</surname>
<given-names>J. B.</given-names>
</name>
<year>1994</year>
<article-title>The inertial lift on a rigid sphere in a linear shear flow field near a flat wall</article-title>
.
<source>J. Fluid Mech.</source>
<volume>263</volume>
,
<fpage>1</fpage>
<lpage>18</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref4">
<name>
<surname>Chorin</surname>
<given-names>A. J.</given-names>
</name>
<year>1968</year>
<article-title>Numerical solution of the Navier–Stokes equations</article-title>
.
<source>Math. Comput.</source>
<volume>22</volume>
,
<fpage>745</fpage>
<lpage>762</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref5">
<name>
<surname>Cox</surname>
<given-names>R. G.</given-names>
</name>
&
<name>
<surname>Hsu</surname>
<given-names>S. K.</given-names>
</name>
<year>1977</year>
<article-title>The lateral migration of solid particles in a laminar flow near a plane</article-title>
.
<source>Intl J. Multiphase Flow</source>
<volume>3</volume>
,
<fpage>201</fpage>
<lpage>222</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref6">
<name>
<surname>Crouch</surname>
<given-names>J. D.</given-names>
</name>
<year>1997</year>
<article-title>Instability and transient growth for two trailing-vortex pairs</article-title>
.
<source>J. Fluid Mech</source>
<volume>350</volume>
,
<fpage>311</fpage>
<lpage>330</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref7">
<name>
<surname>Ersoy</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Walker</surname>
<given-names>J. D. A.</given-names>
</name>
<year>1985</year>
<article-title>Viscous flow induced by counter-rotating vortices</article-title>
.
<source>Phys. Fluids</source>
<volume>28</volume>
<issue>(9)</issue>
,
<fpage>2687</fpage>
<lpage>2698</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref8">
<name>
<surname>Fabre</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Jacquin</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Loof</surname>
<given-names>A.</given-names>
</name>
<year>2002</year>
<article-title>Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration</article-title>
.
<source>J. Fluid Mech.</source>
<volume>451</volume>
,
<fpage>319</fpage>
<lpage>328</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref9">
<name>
<surname>Ghidersa</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Dušek</surname>
<given-names>J.</given-names>
</name>
<year>2000</year>
<article-title>Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere</article-title>
.
<source>J. Fluid Mech.</source>
<volume>423</volume>
,
<fpage>33</fpage>
<lpage>69</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref10">
<name>
<surname>Humphrey</surname>
<given-names>J. A. C.</given-names>
</name>
&
<name>
<surname>Murata</surname>
<given-names>H.</given-names>
</name>
<year>1992</year>
<article-title>On the motion of solid spheres falling through viscous fluids in vertical and inclined tubes</article-title>
.
<source>Transactions ASME: J. Fluids Engng</source>
<volume>114</volume>
,
<fpage>2</fpage>
<lpage>11</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref11">
<name>
<surname>Jackson</surname>
<given-names>S. P.</given-names>
</name>
<year>2007</year>
<article-title>The growing complexity of platelet aggregation</article-title>
.
<source>Blood</source>
<volume>109</volume>
<issue>(12)</issue>
,
<fpage>5087</fpage>
<lpage>5095</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref12">
<name>
<surname>Jacquin</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Fabre</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Sipp</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Theofilis</surname>
<given-names>V.</given-names>
</name>
&
<name>
<surname>Vollmers</surname>
<given-names>H.</given-names>
</name>
<year>2003</year>
<article-title>Instability and unsteadiness of aircraft wake vortices</article-title>
.
<source>Aerosp. Sci. Technol.</source>
<volume>7</volume>
,
<fpage>577</fpage>
<lpage>593</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref13">
<name>
<surname>Jeong</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Hussain</surname>
<given-names>F.</given-names>
</name>
<year>1995</year>
<article-title>On the identification of a vortex</article-title>
.
<source>J. Fluid Mech.</source>
<volume>285</volume>
,
<fpage>69</fpage>
<lpage>94</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref14">
<name>
<surname>Johnson</surname>
<given-names>T. A.</given-names>
</name>
&
<name>
<surname>Patel</surname>
<given-names>V. C.</given-names>
</name>
<year>1999</year>
<article-title>Flow past a sphere up to a Reynolds number of 300</article-title>
.
<source>J. Fluid Mech.</source>
<volume>378</volume>
,
<fpage>19</fpage>
<lpage>70</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref15">
<name>
<surname>Karniadakis</surname>
<given-names>G. E.</given-names>
</name>
,
<name>
<surname>Israeli</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Orszag</surname>
<given-names>S. A.</given-names>
</name>
<year>1991</year>
<article-title>High-order splitting methods for the incompressible Navier–Stokes equations</article-title>
.
<source>J. Comput. Phys.</source>
<volume>97</volume>
,
<fpage>414</fpage>
<lpage>443</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref16">
<name>
<surname>Leontini</surname>
<given-names>J. S.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2007</year>
<article-title>Three-dimensional transition in the wake of a transversely oscillating cylinder</article-title>
.
<source>J. Fluid Mech.</source>
<volume>577</volume>
,
<fpage>79</fpage>
<lpage>104</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref17">
<name>
<surname>Liu</surname>
<given-names>Y. J.</given-names>
</name>
,
<name>
<surname>Nelson</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Joseph</surname>
<given-names>D. D.</given-names>
</name>
<year>1993</year>
<article-title>Anomalous rolling of spheres down an inclined plane</article-title>
.
<source>J. Non-Newtonian Fluid Mech.</source>
<volume>50</volume>
,
<fpage>305</fpage>
<lpage>329</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref18">
<name>
<surname>Magarvey</surname>
<given-names>R. H.</given-names>
</name>
&
<name>
<surname>Bishop</surname>
<given-names>R. L.</given-names>
</name>
<year>1961</year>
<article-title>Transition ranges for three-dimensional wakes</article-title>
.
<source>Can. J. Phys.</source>
<volume>39</volume>
,
<fpage>1418</fpage>
<lpage>1422</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref19">
<name>
<surname>Mittal</surname>
<given-names>R.</given-names>
</name>
<year>1999</year>
<article-title>Planar symmetry in the unsteady wake of a sphere</article-title>
.
<source>AIAA J.</source>
<volume>37</volume>
<issue>(3)</issue>
,
<fpage>388</fpage>
<lpage>390</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref20">
<name>
<surname>Natarajan</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Acrivos</surname>
<given-names>A.</given-names>
</name>
<year>1993</year>
<article-title>The instability of the steady flow past spheres and disks</article-title>
.
<source>J. Fluid Mech.</source>
<volume>254</volume>
,
<fpage>323</fpage>
<lpage>344</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref21">
<name>
<surname>Ormières</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Provansal</surname>
<given-names>M.</given-names>
</name>
<year>1999</year>
<article-title>Transition to turbulence in the wake of a sphere</article-title>
.
<source>Phys. Rev. Lett.</source>
<volume>83</volume>
<issue>(1)</issue>
,
<fpage>80</fpage>
<lpage>83</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref22">
<name>
<surname>Prokunin</surname>
<given-names>A. N.</given-names>
</name>
<year>2004</year>
<article-title>Microcavitation in the slow motion of a solid spherical particle along a wall in a fluid</article-title>
.
<source>Fluid Dyn.</source>
<volume>39</volume>
<issue>(5)</issue>
,
<fpage>771</fpage>
<lpage>778</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref23">
<name>
<surname>Prokunin</surname>
<given-names>A. N.</given-names>
</name>
<year>2007</year>
<article-title>The effects of atmospheric pressure, air concentration in the fluid, and the surface roughness on the solid-sphere motion along a wall</article-title>
.
<source>Phys. Fluids</source>
<volume>19</volume>
, 113601 (
<fpage>1</fpage>
<lpage>10</lpage>
).</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref24">
<name>
<surname>Ryan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2005</year>
<article-title>Three-dimensional transition in the wake of bluff elongated cylinders</article-title>
.
<source>J. Fluid Mech.</source>
<volume>538</volume>
,
<fpage>1</fpage>
<lpage>29</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref25">
<name>
<surname>Ryan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2007</year>
<article-title>The effect of mass ratio and tether length on the flow around a tethered cylinder</article-title>
.
<source>J. Fluid Mech.</source>
<volume>591</volume>
,
<fpage>117</fpage>
<lpage>144</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref26">
<name>
<surname>Sakamoto</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Haniu</surname>
<given-names>H.</given-names>
</name>
<year>1995</year>
<article-title>The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow</article-title>
.
<source>J. Fluid Mech.</source>
<volume>287</volume>
,
<fpage>151</fpage>
<lpage>171</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref27">
<name>
<surname>Schouveiler</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Provansal</surname>
<given-names>M.</given-names>
</name>
<year>2002</year>
<article-title>Self-sustained oscillations in the wake of a sphere</article-title>
.
<source>Phys. Fluids</source>
<volume>14</volume>
<issue>(11)</issue>
,
<fpage>3846</fpage>
<lpage>3854</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref28">
<name>
<surname>Seddon</surname>
<given-names>J. R. T.</given-names>
</name>
&
<name>
<surname>Mullin</surname>
<given-names>T.</given-names>
</name>
<year>2008</year>
<article-title>Cavitation in anisotropic fluids</article-title>
.
<source>Phys. Fluids</source>
<volume>20</volume>
<issue>(2)</issue>
, 023102 (
<fpage>1</fpage>
<lpage>5</lpage>
).</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref29">
<name>
<surname>Sheard</surname>
<given-names>G. J.</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
&
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
<year>2004</year>
<article-title>From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings</article-title>
.
<source>J. Fluid Mech.</source>
<volume>506</volume>
,
<fpage>45</fpage>
<lpage>78</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="thesis" id="ref30">
<name>
<surname>Stewart</surname>
<given-names>B. E.</given-names>
</name>
<year>2008</year>
The dynamics and stability of flows around rolling bluff bodies. PhD thesis, Monash University.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref31">
<name>
<surname>Stewart</surname>
<given-names>B. E.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
<year>2008</year>
<article-title>Wake formation behind a rolling sphere</article-title>
.
<source>Phys. Fluids</source>
<volume>20</volume>
, 071704 (
<fpage>1</fpage>
<lpage>4</lpage>
).</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref32">
<name>
<surname>Takemura</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Magnaudet</surname>
<given-names>J.</given-names>
</name>
<year>2003</year>
<article-title>The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number</article-title>
.
<source>J. Fluid Mech.</source>
<volume>495</volume>
,
<fpage>235</fpage>
<lpage>253</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref33">
<name>
<surname>Taneda</surname>
<given-names>S.</given-names>
</name>
<year>1956</year>
<article-title>Experimental investigation of the wake behind a sphere at low Reynolds numbers</article-title>
.
<source>Phys. Soc. Japan</source>
<volume>11</volume>
<issue>(10)</issue>
,
<fpage>1104</fpage>
<lpage>1108</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref34">
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Hourigan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Cheung</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
<year>2006</year>
<article-title>Hydrodynamics of a particle impact on a wall</article-title>
.
<source>Appl. Math. Model.</source>
<volume>30</volume>
,
<fpage>1356</fpage>
<lpage>1369</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref35">
<name>
<surname>Thompson</surname>
<given-names>M. C.</given-names>
</name>
,
<name>
<surname>Leweke</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Provansal</surname>
<given-names>M.</given-names>
</name>
<year>2001</year>
<article-title>Kinematics and dynamics of sphere wake transition</article-title>
.
<source>J. Fluids Struct.</source>
<volume>15</volume>
,
<fpage>575</fpage>
<lpage>585</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref36">
<name>
<surname>Tomboulides</surname>
<given-names>A. G.</given-names>
</name>
&
<name>
<surname>Orszag</surname>
<given-names>S. A.</given-names>
</name>
<year>2000</year>
<article-title>Numerical investigation of transitional and weak turbulent flow past a sphere</article-title>
.
<source>J. Fluid Mech.</source>
<volume>416</volume>
,
<fpage>45</fpage>
<lpage>73</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref37">
<name>
<surname>Woollard</surname>
<given-names>K. J.</given-names>
</name>
,
<name>
<surname>Suhartoyo</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Harris</surname>
<given-names>E. E.</given-names>
</name>
,
<name>
<surname>Eisenhardt</surname>
<given-names>S. U.</given-names>
</name>
,
<name>
<surname>Jackson</surname>
<given-names>S. P.</given-names>
</name>
,
<name>
<surname>Peter</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Dart</surname>
<given-names>A. M.</given-names>
</name>
,
<name>
<surname>Hickey</surname>
<given-names>M. J.</given-names>
</name>
&
<name>
<surname>Chin-Dusting</surname>
<given-names>J. P. F.</given-names>
</name>
<year>2008</year>
<article-title>Pathophysiological levels of soluble p-selectin mediate adhesion of leukocytes to the endothelium through mac-1 activation</article-title>
.
<source>Circulat. Res</source>
.
<volume>103</volume>
<issue>(10)</issue>
,
<fpage>1128</fpage>
<lpage>1138</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref38">
<name>
<surname>Zeng</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Balachandar</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Fischer</surname>
<given-names>P.</given-names>
</name>
<year>2005</year>
<article-title>Wall-induced forces on a rigid sphere at finite Reynolds number</article-title>
.
<source>J. Fluid Mech.</source>
<volume>536</volume>
,
<fpage>1</fpage>
<lpage>25</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" id="ref39">
<name>
<surname>Zeng</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Najjar</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Balachandar</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Fischer</surname>
<given-names>P.</given-names>
</name>
<year>2009</year>
<article-title>Forces on a finite-sized particle located close to a wall in a linear shear flow</article-title>
.
<source>Phys. Fluids</source>
<volume>21</volume>
, 033302 (
<fpage>1</fpage>
<lpage>18</lpage>
).</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Numerical and experimental studies of the rolling sphere wake</title>
</titleInfo>
<titleInfo type="alternative">
<title>B. E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Numerical and experimental studies of the rolling sphere wake</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">B. E.</namePart>
<namePart type="family">STEWART</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
<affiliation>E-mail: stewart.bronwyn01@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. C.</namePart>
<namePart type="family">THOMPSON</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">LEWEKE</namePart>
<affiliation>Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS/Universités Aix-Marseille, 49 rue Frédéric Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">HOURIGAN</namePart>
<affiliation>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<affiliation>Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Cambridge University Press</publisher>
<place>
<placeTerm type="text">Cambridge, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-01-25</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract type="normal">A numerical and experimental investigation is reported for the flow around a rolling sphere when moving adjacent to a plane wall. The dimensionless rotation rate of the sphere is varied from forward to reversed rolling and the resulting wake modes are found to be strongly dependent on the value of this parameter. Results are reported for the Reynolds number range 100 < Re < 350, which has been shown to capture the unsteady transitions in the wake. Over this range of Reynolds number, both steady and unsteady wake modes are observed. As the sphere undergoes forward rolling, the wake displays similarities to the flow behind an isolated sphere in a free stream. As the Reynolds number of the flow increases, hairpin vortices form and are shed over the surface of the sphere. However, for cases with reversed rotation, the wake takes the form of two distinct streamwise vortices that form around the sides of the body. These streamwise structures in the wake undergo a transition to a new unsteady mode as the Reynolds number increases. During the evolution of this unsteady mode, the streamwise vortices form an out-of-phase spiral pair. Four primary wake modes are identified and a very good qualitative agreement is observed between the numerical and experimental results. The numerical simulations also reveal the existence of an additional unsteady mode that is found to be unstable to small perturbations in the flow.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fluid Mechanics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Fluid Mech.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-1120</identifier>
<identifier type="eISSN">1469-7645</identifier>
<identifier type="PublisherID">FLM</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>643</number>
</detail>
<extent unit="pages">
<start>137</start>
<end>162</end>
<total>26</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB</identifier>
<identifier type="ark">ark:/67375/6GQ-8BZH6MTJ-X</identifier>
<identifier type="DOI">10.1017/S0022112009992072</identifier>
<identifier type="PII">S0022112009992072</identifier>
<identifier type="ArticleID">99207</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © Cambridge University Press 2010</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</recordContentSource>
<recordOrigin>Copyright © Cambridge University Press 2010</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A6A4D1DFC6EA1D251A4DDF9E88165D25376FD0CB
   |texte=   Numerical and experimental studies of the rolling sphere wake
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024