Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods

Identifieur interne : 001E87 ( Istex/Corpus ); précédent : 001E86; suivant : 001E88

Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods

Auteurs : R. L. Thompson ; P. Bousquet ; F. Chevallier ; P. J. Rayner ; P. Ciais

Source :

RBID : ISTEX:A30AA400581D125D847754A71B8C7EC9B9ABFCDB

English descriptors

Abstract

This study investigates some of the principal errors arising in atmospheric inversion estimates of N2O surface fluxes. Using a synthetic data set of model‐generated atmospheric N2O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N2O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N2O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N2O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N2O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.

Url:
DOI: 10.1029/2011JD015815

Links to Exploration step

ISTEX:A30AA400581D125D847754A71B8C7EC9B9ABFCDB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
<author>
<name sortKey="Thompson, R L" sort="Thompson, R L" uniqKey="Thompson R" first="R. L." last="Thompson">R. L. Thompson</name>
<affiliation>
<mods:affiliation>E-mail: rona.thompson@lsce.ipsl.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rona.thompson@lsce.ipsl.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, F" sort="Chevallier, F" uniqKey="Chevallier F" first="F." last="Chevallier">F. Chevallier</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ciais, P" sort="Ciais, P" uniqKey="Ciais P" first="P." last="Ciais">P. Ciais</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A30AA400581D125D847754A71B8C7EC9B9ABFCDB</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2011JD015815</idno>
<idno type="url">https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E87</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
<author>
<name sortKey="Thompson, R L" sort="Thompson, R L" uniqKey="Thompson R" first="R. L." last="Thompson">R. L. Thompson</name>
<affiliation>
<mods:affiliation>E-mail: rona.thompson@lsce.ipsl.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rona.thompson@lsce.ipsl.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, F" sort="Chevallier, F" uniqKey="Chevallier F" first="F." last="Chevallier">F. Chevallier</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ciais, P" sort="Ciais, P" uniqKey="Ciais P" first="P." last="Ciais">P. Ciais</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">116</biblScope>
<biblScope unit="issue">D17</biblScope>
<biblScope unit="page-count">14</biblScope>
<date type="published" when="2011-09-16">2011-09-16</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinic flux</term>
<term>Adjoint model</term>
<term>Aggregation errors</term>
<term>Aircraft data</term>
<term>Archived fields</term>
<term>Atmos</term>
<term>Atmospheric</term>
<term>Atmospheric lifetime</term>
<term>Atmospheric observations</term>
<term>Atmospheric transport</term>
<term>Atmospheric transport model</term>
<term>Austral summer</term>
<term>Auxiliary material</term>
<term>Bayesian inversion framework</term>
<term>Bias errors</term>
<term>Cambridge univ</term>
<term>Caribic passenger aircraft</term>
<term>Central europe</term>
<term>Chem</term>
<term>Chevallier</term>
<term>Circulation model</term>
<term>Climate change</term>
<term>Convection mass fluxes</term>
<term>Corazza</term>
<term>Earth sciences</term>
<term>East coast</term>
<term>Emission estimates</term>
<term>Error covariance matrix</term>
<term>Error reduction</term>
<term>Error reductions</term>
<term>European emissions</term>
<term>Extra degrees</term>
<term>Flux</term>
<term>Fluxes table</term>
<term>Fourth assessment report</term>
<term>Free troposphere</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global inversions</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Growth rate</term>
<term>Highest density</term>
<term>Horizontal distribution</term>
<term>Human activities</term>
<term>Increment</term>
<term>Intergovernmental panel</term>
<term>Inversion</term>
<term>Inversion estimates</term>
<term>Inversion framework</term>
<term>Inversion methods</term>
<term>Inversion results</term>
<term>Inversion tests</term>
<term>Latitudinal</term>
<term>Latitudinal band</term>
<term>Latitudinal bands</term>
<term>Little impact</term>
<term>Lmdz</term>
<term>Lmdz model</term>
<term>Lower stratosphere</term>
<term>Mace head</term>
<term>Mass fluxes</term>
<term>Maximum flux</term>
<term>Measurement errors</term>
<term>Mismatch</term>
<term>More freedom</term>
<term>Nitroeurope project</term>
<term>Nitrous</term>
<term>Nitrous oxide</term>
<term>Nitrous oxide fluxes</term>
<term>Northern hemisphere</term>
<term>Notable error reductions</term>
<term>Optimization</term>
<term>Optimized</term>
<term>Optimized surface fluxes</term>
<term>Oxide</term>
<term>Personal communication</term>
<term>Perturbed</term>
<term>Phys</term>
<term>Physical science basis</term>
<term>Positive increments</term>
<term>Pseudo</term>
<term>Pseudo aircraft data</term>
<term>Pseudo aircraft observations</term>
<term>Random errors</term>
<term>Reference inversion</term>
<term>Scalar</term>
<term>Scalar errors</term>
<term>Scalar value</term>
<term>Scalar values</term>
<term>Seasonal cycle</term>
<term>Second test</term>
<term>Simultaneous optimization</term>
<term>Southern hemisphere</term>
<term>Spatial distribution</term>
<term>Spatial resolution</term>
<term>Sref</term>
<term>State vector</term>
<term>Stratosphere</term>
<term>Stratospheric</term>
<term>Substantial errors</term>
<term>Sufficient information</term>
<term>Supplementary material</term>
<term>Surface flux</term>
<term>Surface flux errors</term>
<term>Surface flux estimates</term>
<term>Surface flux increments</term>
<term>Surface flux rmse</term>
<term>Surface flux uncertainties</term>
<term>Surface fluxes</term>
<term>Surface observations</term>
<term>Synthetic data</term>
<term>Temporal resolution</term>
<term>Test sref</term>
<term>Tests sref</term>
<term>Time step</term>
<term>Transport error</term>
<term>Transport errors</term>
<term>Transport model</term>
<term>Tropical africa</term>
<term>Troposphere</term>
<term>Tropospheric</term>
<term>True fluxes</term>
<term>True value</term>
<term>Variational formulation</term>
<term>Vertical column</term>
<term>Vertical gradient</term>
<term>Vertical mass flux</term>
<term>Vertical mass fluxes</term>
<term>Vertical transport</term>
<term>Vertical transport errors</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Actinic flux</term>
<term>Adjoint model</term>
<term>Aggregation errors</term>
<term>Aircraft data</term>
<term>Archived fields</term>
<term>Atmos</term>
<term>Atmospheric</term>
<term>Atmospheric lifetime</term>
<term>Atmospheric observations</term>
<term>Atmospheric transport</term>
<term>Atmospheric transport model</term>
<term>Austral summer</term>
<term>Auxiliary material</term>
<term>Bayesian inversion framework</term>
<term>Bias errors</term>
<term>Cambridge univ</term>
<term>Caribic passenger aircraft</term>
<term>Central europe</term>
<term>Chem</term>
<term>Chevallier</term>
<term>Circulation model</term>
<term>Climate change</term>
<term>Convection mass fluxes</term>
<term>Corazza</term>
<term>Earth sciences</term>
<term>East coast</term>
<term>Emission estimates</term>
<term>Error covariance matrix</term>
<term>Error reduction</term>
<term>Error reductions</term>
<term>European emissions</term>
<term>Extra degrees</term>
<term>Flux</term>
<term>Fluxes table</term>
<term>Fourth assessment report</term>
<term>Free troposphere</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global inversions</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Growth rate</term>
<term>Highest density</term>
<term>Horizontal distribution</term>
<term>Human activities</term>
<term>Increment</term>
<term>Intergovernmental panel</term>
<term>Inversion</term>
<term>Inversion estimates</term>
<term>Inversion framework</term>
<term>Inversion methods</term>
<term>Inversion results</term>
<term>Inversion tests</term>
<term>Latitudinal</term>
<term>Latitudinal band</term>
<term>Latitudinal bands</term>
<term>Little impact</term>
<term>Lmdz</term>
<term>Lmdz model</term>
<term>Lower stratosphere</term>
<term>Mace head</term>
<term>Mass fluxes</term>
<term>Maximum flux</term>
<term>Measurement errors</term>
<term>Mismatch</term>
<term>More freedom</term>
<term>Nitroeurope project</term>
<term>Nitrous</term>
<term>Nitrous oxide</term>
<term>Nitrous oxide fluxes</term>
<term>Northern hemisphere</term>
<term>Notable error reductions</term>
<term>Optimization</term>
<term>Optimized</term>
<term>Optimized surface fluxes</term>
<term>Oxide</term>
<term>Personal communication</term>
<term>Perturbed</term>
<term>Phys</term>
<term>Physical science basis</term>
<term>Positive increments</term>
<term>Pseudo</term>
<term>Pseudo aircraft data</term>
<term>Pseudo aircraft observations</term>
<term>Random errors</term>
<term>Reference inversion</term>
<term>Scalar</term>
<term>Scalar errors</term>
<term>Scalar value</term>
<term>Scalar values</term>
<term>Seasonal cycle</term>
<term>Second test</term>
<term>Simultaneous optimization</term>
<term>Southern hemisphere</term>
<term>Spatial distribution</term>
<term>Spatial resolution</term>
<term>Sref</term>
<term>State vector</term>
<term>Stratosphere</term>
<term>Stratospheric</term>
<term>Substantial errors</term>
<term>Sufficient information</term>
<term>Supplementary material</term>
<term>Surface flux</term>
<term>Surface flux errors</term>
<term>Surface flux estimates</term>
<term>Surface flux increments</term>
<term>Surface flux rmse</term>
<term>Surface flux uncertainties</term>
<term>Surface fluxes</term>
<term>Surface observations</term>
<term>Synthetic data</term>
<term>Temporal resolution</term>
<term>Test sref</term>
<term>Tests sref</term>
<term>Time step</term>
<term>Transport error</term>
<term>Transport errors</term>
<term>Transport model</term>
<term>Tropical africa</term>
<term>Troposphere</term>
<term>Tropospheric</term>
<term>True fluxes</term>
<term>True value</term>
<term>Variational formulation</term>
<term>Vertical column</term>
<term>Vertical gradient</term>
<term>Vertical mass flux</term>
<term>Vertical mass fluxes</term>
<term>Vertical transport</term>
<term>Vertical transport errors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This study investigates some of the principal errors arising in atmospheric inversion estimates of N2O surface fluxes. Using a synthetic data set of model‐generated atmospheric N2O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N2O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N2O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N2O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N2O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>surface fluxes</json:string>
<json:string>sref</json:string>
<json:string>inversion</json:string>
<json:string>optimized</json:string>
<json:string>optimization</json:string>
<json:string>inversion estimates</json:string>
<json:string>stratospheric</json:string>
<json:string>lmdz</json:string>
<json:string>geophys</json:string>
<json:string>grid</json:string>
<json:string>atmos</json:string>
<json:string>increment</json:string>
<json:string>tropospheric</json:string>
<json:string>latitudinal</json:string>
<json:string>phys</json:string>
<json:string>chevallier</json:string>
<json:string>troposphere</json:string>
<json:string>inversion tests</json:string>
<json:string>mismatch</json:string>
<json:string>nitrous</json:string>
<json:string>true fluxes</json:string>
<json:string>surface flux</json:string>
<json:string>bias errors</json:string>
<json:string>chem</json:string>
<json:string>scalar</json:string>
<json:string>error reduction</json:string>
<json:string>corazza</json:string>
<json:string>atmospheric transport</json:string>
<json:string>true value</json:string>
<json:string>random errors</json:string>
<json:string>test sref</json:string>
<json:string>pseudo</json:string>
<json:string>aircraft data</json:string>
<json:string>nitrous oxide</json:string>
<json:string>synthetic data</json:string>
<json:string>spatial distribution</json:string>
<json:string>transport model</json:string>
<json:string>stratosphere</json:string>
<json:string>climate change</json:string>
<json:string>latitudinal band</json:string>
<json:string>growth rate</json:string>
<json:string>seasonal cycle</json:string>
<json:string>atmospheric transport model</json:string>
<json:string>surface flux errors</json:string>
<json:string>vertical mass fluxes</json:string>
<json:string>error covariance matrix</json:string>
<json:string>simultaneous optimization</json:string>
<json:string>circulation model</json:string>
<json:string>global</json:string>
<json:string>perturbed</json:string>
<json:string>nitroeurope project</json:string>
<json:string>time step</json:string>
<json:string>state vector</json:string>
<json:string>aggregation errors</json:string>
<json:string>surface flux uncertainties</json:string>
<json:string>latitudinal bands</json:string>
<json:string>vertical gradient</json:string>
<json:string>grid cells</json:string>
<json:string>surface flux increments</json:string>
<json:string>global inversions</json:string>
<json:string>reference inversion</json:string>
<json:string>lmdz model</json:string>
<json:string>actinic flux</json:string>
<json:string>personal communication</json:string>
<json:string>tropical africa</json:string>
<json:string>east coast</json:string>
<json:string>tests sref</json:string>
<json:string>mass fluxes</json:string>
<json:string>northern hemisphere</json:string>
<json:string>grid cell</json:string>
<json:string>global biogeochem</json:string>
<json:string>vertical transport</json:string>
<json:string>vertical mass flux</json:string>
<json:string>vertical transport errors</json:string>
<json:string>pseudo aircraft data</json:string>
<json:string>fluxes table</json:string>
<json:string>flux</json:string>
<json:string>atmospheric</json:string>
<json:string>positive increments</json:string>
<json:string>mace head</json:string>
<json:string>supplementary material</json:string>
<json:string>caribic passenger aircraft</json:string>
<json:string>pseudo aircraft observations</json:string>
<json:string>more freedom</json:string>
<json:string>inversion results</json:string>
<json:string>surface flux rmse</json:string>
<json:string>maximum flux</json:string>
<json:string>convection mass fluxes</json:string>
<json:string>archived fields</json:string>
<json:string>temporal resolution</json:string>
<json:string>vertical column</json:string>
<json:string>extra degrees</json:string>
<json:string>adjoint model</json:string>
<json:string>auxiliary material</json:string>
<json:string>little impact</json:string>
<json:string>atmospheric observations</json:string>
<json:string>optimized surface fluxes</json:string>
<json:string>highest density</json:string>
<json:string>bayesian inversion framework</json:string>
<json:string>surface flux estimates</json:string>
<json:string>southern hemisphere</json:string>
<json:string>second test</json:string>
<json:string>substantial errors</json:string>
<json:string>spatial resolution</json:string>
<json:string>emission estimates</json:string>
<json:string>measurement errors</json:string>
<json:string>lower stratosphere</json:string>
<json:string>atmospheric lifetime</json:string>
<json:string>surface observations</json:string>
<json:string>sufficient information</json:string>
<json:string>human activities</json:string>
<json:string>earth sciences</json:string>
<json:string>scalar values</json:string>
<json:string>notable error reductions</json:string>
<json:string>central europe</json:string>
<json:string>free troposphere</json:string>
<json:string>horizontal distribution</json:string>
<json:string>austral summer</json:string>
<json:string>scalar value</json:string>
<json:string>scalar errors</json:string>
<json:string>error reductions</json:string>
<json:string>transport error</json:string>
<json:string>transport errors</json:string>
<json:string>variational formulation</json:string>
<json:string>inversion framework</json:string>
<json:string>inversion methods</json:string>
<json:string>nitrous oxide fluxes</json:string>
<json:string>cambridge univ</json:string>
<json:string>physical science basis</json:string>
<json:string>fourth assessment report</json:string>
<json:string>intergovernmental panel</json:string>
<json:string>european emissions</json:string>
<json:string>oxide</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>R. L. Thompson</name>
<affiliations>
<json:string>E-mail: rona.thompson@lsce.ipsl.fr</json:string>
<json:string>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</json:string>
<json:string>E-mail: rona.thompson@lsce.ipsl.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Bousquet</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Chevallier</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. J. Rayner</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</json:string>
<json:string>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Ciais</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>emissions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inversion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nitrous oxide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sink</value>
</json:item>
</subject>
<articleId>
<json:string>2011JD015815</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-XS1P6007-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>This study investigates some of the principal errors arising in atmospheric inversion estimates of N2O surface fluxes. Using a synthetic data set of model‐generated atmospheric N2O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N2O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N2O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N2O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N2O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.</abstract>
<qualityIndicators>
<score>9.976</score>
<pdfWordCount>9292</pdfWordCount>
<pdfCharCount>54942</pdfCharCount>
<pdfVersion>1.6</pdfVersion>
<pdfPageCount>14</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>248</abstractWordCount>
<abstractCharCount>1606</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Atmospheres</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRD</json:string>
</publisherId>
<volume>116</volume>
<issue>D17</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>14</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Biosphere/atmosphere interactions</value>
</json:item>
<json:item>
<value>Evolution of the atmosphere</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Mass balance</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Atmosphere</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2009</json:string>
<json:string>2011</json:string>
<json:string>2006</json:string>
<json:string>2007</json:string>
<json:string>1013</json:string>
<json:string>2008</json:string>
<json:string>19th century</json:string>
</date>
<geogName>
<json:string>North Sea</json:string>
</geogName>
<orgName>
<json:string>Argentina TT</json:string>
<json:string>Germany SMO, Samoa SPO, South Pole STM, Norway SUM, Summit, Greenland SYO, Antarctica TDF, Tierra</json:string>
<json:string>Poland BIK, Bialystok, Poland BME, Bermuda BMW, Bermuda BRW, Barrow, Alaska BSC, Black Sea, Romania CBW, Cabauw, Netherlands CBA, Cold Bay, Alaska CHR, Christmas Isl</json:string>
<json:string>Ulaanbaatar Mongolia, Flights UUM, Ulaan Uul, Mongolia WIS, Israel WLG, Mt Waliguan, China ZEP, Svalbard, Sweden</json:string>
<json:string>Harvard University</json:string>
<json:string>Seychelles SHM, Shemya Isl</json:string>
<json:string>Switzerland KUM, Kumukahi, Hawaii KZD, Kazakhstan LU</json:string>
<json:string>University of Melbourne</json:string>
<json:string>Hohenpreißenberg Germany HUN, Hegyhatsal, Hungary ICE, Iceland IZO, Tenerife, Canary Isl</json:string>
<json:string>Canada ASC, Ascension Isl</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Kazakhstan MHD, Mace Head, Ireland MID, Midway, USA MLO, Mauna Loa, Hawaii NWR, Niwot Ridge, USA OXK, Ochsenkopf, Germany PAL, Pallas, Finland PFA, Poker Flat, Alaska, Flights PSA, Palmer Station, Antarctica RPB, Ragged Point, Barbados RTA, Raratonga Flights SEY, Mahe Isl</json:string>
<json:string>Algeria AZR, Terceira Isl</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Geophys</json:string>
<json:string>Map</json:string>
<json:string>I. Pison</json:string>
<json:string>S. Wofsy</json:string>
<json:string>P. J. Rayner</json:string>
<json:string>L. Bouwman</json:string>
<json:string>P. Bousquet</json:string>
<json:string>Van Leer</json:string>
<json:string>Mariana Isl</json:string>
<json:string>F. Chevallier</json:string>
<json:string>P. Ciais</json:string>
<json:string>D. Pseudo</json:string>
<json:string>C. Sweeney</json:string>
<json:string>R. Thompson</json:string>
<json:string>P. Bergamaschi</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Montreal</json:string>
<json:string>Melbourne</json:string>
<json:string>Victoria</json:string>
<json:string>China</json:string>
<json:string>Europe</json:string>
<json:string>America</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Yver et al., 2010</json:string>
<json:string>Hirsch et al. [2006]</json:string>
<json:string>Cheiney et al., 2009</json:string>
<json:string>Chevallier et al. [2005]</json:string>
<json:string>Corazza et al., 2010</json:string>
<json:string>[6]</json:string>
<json:string>Denman et al., 2007</json:string>
<json:string>[22]</json:string>
<json:string>Ryall et al., 2001</json:string>
<json:string>Chevallier et al., 2005</json:string>
<json:string>Hourdin and Armengaud, 1999</json:string>
<json:string>Huang et al., 2008</json:string>
<json:string>Kaminski et al., 2001</json:string>
<json:string>Thompson et al., 2010</json:string>
<json:string>Seitzinger et al., 2000</json:string>
<json:string>Schuck et al., 2010</json:string>
<json:string>[21]</json:string>
<json:string>Pison et al., 2009</json:string>
<json:string>Prinn et al., 1990</json:string>
<json:string>[16]</json:string>
<json:string>Naqvi et al., 2000</json:string>
<json:string>Bouwman et al., 2002</json:string>
<json:string>Minschwaner et al., 1993</json:string>
<json:string>Nevison et al., 2004</json:string>
<json:string>Stephens et al., 2007</json:string>
<json:string>Ravishankara et al., 2009</json:string>
<json:string>Olivier et al., 1998</json:string>
<json:string>Hirsch et al., 2006</json:string>
<json:string>[37]</json:string>
<json:string>Machida et al., 2008</json:string>
<json:string>Hauglustaine et al., 2004</json:string>
<json:string>Manning et al., 2003</json:string>
<json:string>[1999]</json:string>
<json:string>Patra et al., 2011</json:string>
<json:string>Forster et al., 2007</json:string>
<json:string>Galloway et al., 2008</json:string>
<json:string>[9]</json:string>
<json:string>Prinn et al. [1990]</json:string>
<json:string>Volk et al., 1997</json:string>
<json:string>Uppala et al., 2005</json:string>
<json:string>[2]</json:string>
<json:string>[24]</json:string>
<json:string>[1982]</json:string>
<json:string>Hourdin et al., 2006</json:string>
<json:string>Brenninkmeijer et al., 2007</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-XS1P6007-1</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2011JD015815</json:string>
</doi>
<id>A30AA400581D125D847754A71B8C7EC9B9ABFCDB</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2011 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2011-09-16"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
<title level="a" type="short">INVERSION ESTIMATES OF N2O FLUXES</title>
<author xml:id="author-0000">
<persName>
<forename type="first">R. L.</forename>
<surname>Thompson</surname>
</persName>
<email>rona.thompson@lsce.ipsl.fr</email>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">P.</forename>
<surname>Bousquet</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">F.</forename>
<surname>Chevallier</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">P. J.</forename>
<surname>Rayner</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">P.</forename>
<surname>Ciais</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<settlement type="city">Gif sur Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<idno type="istex">A30AA400581D125D847754A71B8C7EC9B9ABFCDB</idno>
<idno type="ark">ark:/67375/WNG-XS1P6007-1</idno>
<idno type="DOI">10.1029/2011JD015815</idno>
<idno type="editorialOffice">2011JD015815</idno>
<idno type="society">D17307</idno>
<idno type="unit">JGRD17190</idno>
<idno type="toTypesetVersion">file:JGRD.JGRD17190.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202d</idno>
<idno type="book-part-DOI">10.1002/jgrd.v116.D17</idno>
<idno type="product">JGRD</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">116</biblScope>
<biblScope unit="issue">D17</biblScope>
<biblScope unit="page-count">14</biblScope>
<date type="published" when="2011-09-16"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrd17190-para-0004">This study investigates some of the principal errors arising in atmospheric inversion estimates of N
<hi rend="subscript">2</hi>
O surface fluxes. Using a synthetic data set of model‐generated atmospheric N
<hi rend="subscript">2</hi>
O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N
<hi rend="subscript">2</hi>
O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N
<hi rend="subscript">2</hi>
O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N
<hi rend="subscript">2</hi>
O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N
<hi rend="subscript">2</hi>
O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="jgrd17190-para-0005">
<list style="bulleted">
<item>Inversion estimates of N2O fluxes are sensitive to bias errors in the sink</item>
<item>Simultaneous optimization of N2O surface fluxes and sink is possible</item>
<item>Model vertical transport errors lead to errors in flux spatial distribution</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrd17190-kwd-0001">emissions</term>
<term xml:id="jgrd17190-kwd-0002">inversion</term>
<term xml:id="jgrd17190-kwd-0003">nitrous oxide</term>
<term xml:id="jgrd17190-kwd-0004">sink</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ACH">Composition and Chemistry</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</classCode>
<keywords rend="articleCategory">
<term>Composition and Chemistry</term>
</keywords>
<keywords rend="tocHeading1">
<term>Composition and Chemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd17190">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="170">
<doi>10.1002/jgrd.v116.D17</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="116">116</numbering>
<numbering type="journalIssue">D17</numbering>
</numberingGroup>
<coverDate startDate="2011-09-16">16 September 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="250" type="article" status="forIssue">
<doi>10.1029/2011JD015815</doi>
<idGroup>
<id type="editorialOffice" value="2011JD015815"></id>
<id type="society" value="D17307"></id>
<id type="unit" value="JGRD17190"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Composition and Chemistry</title>
<title type="tocHeading1">Composition and Chemistry</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-02-14"></event>
<event type="manuscriptRevised" date="2011-06-13"></event>
<event type="manuscriptAccepted" date="2011-06-15"></event>
<event type="firstOnline" date="2011-09-14"></event>
<event type="publishedOnlineFinalForm" date="2011-09-14"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-02-18"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ACH">Composition and Chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1218">Mass balance</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1610">Atmosphere</subject>
<subject href="http://psi.agu.org/taxonomy5/1631">Land/atmosphere interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1843">Land/atmosphere interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3322">Land/atmosphere interactions</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd17190-cit-0000" type="self">
<author>
<familyName>Thompson</familyName>
,
<givenNames>R. L.</givenNames>
</author>
,
<author>
<givenNames>P.</givenNames>
<familyName>Bousquet</familyName>
</author>
,
<author>
<givenNames>F.</givenNames>
<familyName>Chevallier</familyName>
</author>
,
<author>
<givenNames>P. J.</givenNames>
<familyName>Rayner</familyName>
</author>
, and
<author>
<givenNames>P.</givenNames>
<familyName>Ciais</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>116</vol>
, D17307, doi:
<accessionId ref="info:doi/10.1029/2011JD015815">10.1029/2011JD015815</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD17190.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="10300"></count>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="5"></count>
</countGroup>
<titleGroup>
<title type="main">Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
<title type="short">INVERSION ESTIMATES OF N
<sub>2</sub>
O FLUXES</title>
<title type="shortAuthors">Thompson
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd17190-cr-0001" affiliationRef="#jgrd17190-aff-0001">
<personName>
<givenNames>R. L.</givenNames>
<familyName>Thompson</familyName>
</personName>
<contactDetails>
<email normalForm="rona.thompson@lsce.ipsl.fr">rona.thompson@lsce.ipsl.fr</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrd17190-cr-0002" affiliationRef="#jgrd17190-aff-0001">
<personName>
<givenNames>P.</givenNames>
<familyName>Bousquet</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17190-cr-0003" affiliationRef="#jgrd17190-aff-0001">
<personName>
<givenNames>F.</givenNames>
<familyName>Chevallier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17190-cr-0004" affiliationRef="#jgrd17190-aff-0001 #jgrd17190-aff-0002">
<personName>
<givenNames>P. J.</givenNames>
<familyName>Rayner</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17190-cr-0005" affiliationRef="#jgrd17190-aff-0001">
<personName>
<givenNames>P.</givenNames>
<familyName>Ciais</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="jgrd17190-aff-0001">
<orgName>Laboratoire des Sciences du Climat et l'Environnement</orgName>
<address>
<city>Gif sur Yvette</city>
<country>France</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="jgrd17190-aff-0002">
<unparsedAffiliation>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd17190-kwd-0001">emissions</keyword>
<keyword xml:id="jgrd17190-kwd-0002">inversion</keyword>
<keyword xml:id="jgrd17190-kwd-0003">nitrous oxide</keyword>
<keyword xml:id="jgrd17190-kwd-0004">sink</keyword>
</keywordGroup>
<supportingInformation xml:id="jgrd17190-sup-0000">
<p xml:id="jgrd17190-para-0001">Auxiliary material for this article contains additional figures.</p>
<p xml:id="jgrd17190-para-0002">Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac).</p>
<p xml:id="jgrd17190-para-0003">Additional file information is provided in the readme.txt.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0001-readme"></mediaResource>
<caption>readme.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0002-fs01"></mediaResource>
<caption>Figure S1. N2O mixing ratios simulated by coupling the true fluxes to LMDz shown for 6 example sites.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0003-fs02"></mediaResource>
<caption>Figure S2. Simulated N2O seasonal cycles for 2007 shown for the same 6 example sites and 4 scenarios as described for Figure S1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0004-fs03a"></mediaResource>
<caption>Figure S3a. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Jun‐2008 at 5 hPa.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0005-fs03b"></mediaResource>
<caption>Figure S3b. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Dec‐2008 at 5 hPa.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0006-fs03c"></mediaResource>
<caption>Figure S3c. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Jun‐2008 at 183 hPa.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0007-fs03d"></mediaResource>
<caption>Figure S3d. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Dec‐2008 at 183 hPa.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0008-fs04"></mediaResource>
<caption>Figure S4. Temporal evolution of the zonal mean vertical profile of N2O (in ppb) for the year 2008.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0009-fs05"></mediaResource>
<caption>Figure S5. Temporal evolution of the difference in zonal mean vertical profile of N2O relative to scenario P1 (in ppb) for the year 2008.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0010-fs06"></mediaResource>
<caption>Figure S6. Difference in the interhemispheric gradients of scenarios P2 to P4 relative to P1 shown for the lowermost model layer (surface up to 995 hPa) and for the year 2008.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0011-fs07a"></mediaResource>
<caption>Figure S7a. The temporal evolution of the zonal mean N2O mixing ratio (ppb) for the scenario P4 shown at 45°N for the year 2008 (the x‐axis is the day‐of‐year).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/pjpeg" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0012-fs07b"></mediaResource>
<caption>Figure S7b. Same as Figure 7a but showing the difference between scenario P4 and P1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0013-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0014-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0015-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0016-t04"></mediaResource>
<caption>Tab‐delimited Table 4.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17190:jgrd17190-sup-0017-t05"></mediaResource>
<caption>Tab‐delimited Table 5.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd17190-para-0004" label="1">This study investigates some of the principal errors arising in atmospheric inversion estimates of N
<sub>2</sub>
O surface fluxes. Using a synthetic data set of model‐generated atmospheric N
<sub>2</sub>
O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N
<sub>2</sub>
O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N
<sub>2</sub>
O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N
<sub>2</sub>
O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N
<sub>2</sub>
O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrd17190-para-0005">
<list style="bulleted">
<listItem>Inversion estimates of N2O fluxes are sensitive to bias errors in the sink</listItem>
<listItem>Simultaneous optimization of N2O surface fluxes and sink is possible</listItem>
<listItem>Model vertical transport errors lead to errors in flux spatial distribution</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>INVERSION ESTIMATES OF N2O FLUXES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">R. L.</namePart>
<namePart type="family">Thompson</namePart>
<affiliation>E-mail: rona.thompson@lsce.ipsl.fr</affiliation>
<affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</affiliation>
<affiliation>E-mail: rona.thompson@lsce.ipsl.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Bousquet</namePart>
<affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Chevallier</namePart>
<affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. J.</namePart>
<namePart type="family">Rayner</namePart>
<affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</affiliation>
<affiliation>Now at School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Ciais</namePart>
<affiliation>Laboratoire des Sciences du Climat et l'Environnement, Gif sur Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-09-16</dateIssued>
<dateCaptured encoding="w3cdtf">2011-02-14</dateCaptured>
<dateValid encoding="w3cdtf">2011-06-15</dateValid>
<edition>Thompson, R. L., P. Bousquet, F. Chevallier, P. J. Rayner, and P. Ciais (2011), Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods, J. Geophys. Res., 116, D17307, doi:10.1029/2011JD015815.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">7</extent>
<extent unit="tables">5</extent>
<extent unit="words">10300</extent>
</physicalDescription>
<abstract>This study investigates some of the principal errors arising in atmospheric inversion estimates of N2O surface fluxes. Using a synthetic data set of model‐generated atmospheric N2O mixing ratio data, representative of the current observation network, we investigate the influence of errors in the stratospheric N2O sink and in vertical transport. Our inversion framework uses a variational formulation of the Bayesian problem, and atmospheric transport is modeled using the global circulation model LMDz. When only optimizing the surface fluxes (with a prescribed sink), bias errors in the sink magnitude translate into substantial bias errors in the retrieved global total surface fluxes. Conversely, we find that errors only in the temporal and horizontal distribution of the N2O sink (nonbiased magnitude) have a very small impact on tropospheric mixing ratios and thus on the retrieved surface fluxes. Bias errors in the modeled vertical transport, however, lead to notable changes in tropospheric N2O and, in particular, in the phase of the seasonal cycle. This also leads to bias errors in the spatial distribution of the derived surface fluxes, although not in the global total. Last, the simultaneous optimization of the surface fluxes and the sink magnitude was tested as a means to avoid biasing the fluxes by incorrect prior assumptions about the N2O lifetime. With this approach, a significant reduction in the error of the sink magnitude was achieved and biases in the surface fluxes were largely avoided, and this result was further enhanced when aircraft data were included in the inversion.</abstract>
<abstract type="short">Inversion estimates of N2O fluxes are sensitive to bias errors in the sink Simultaneous optimization of N2O surface fluxes and sink is possible Model vertical transport errors lead to errors in flux spatial distribution</abstract>
<subject>
<genre>keywords</genre>
<topic>emissions</topic>
<topic>inversion</topic>
<topic>nitrous oxide</topic>
<topic>sink</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Auxiliary material for this article contains additional figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains additional figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains additional figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt.Supporting Info Item: readme.txt - Figure S1. N2O mixing ratios simulated by coupling the true fluxes to LMDz shown for 6 example sites. - Figure S2. Simulated N2O seasonal cycles for 2007 shown for the same 6 example sites and 4 scenarios as described for Figure S1. - Figure S3a. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Jun‐2008 at 5 hPa. - Figure S3b. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Dec‐2008 at 5 hPa. - Figure S3c. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Jun‐2008 at 183 hPa. - Figure S3d. Difference (scenario P4 ‐ P1) in N2O mixing ratio in the stratosphere owing to the change in N2O loss distribution, shown for Dec‐2008 at 183 hPa. - Figure S4. Temporal evolution of the zonal mean vertical profile of N2O (in ppb) for the year 2008. - Figure S5. Temporal evolution of the difference in zonal mean vertical profile of N2O relative to scenario P1 (in ppb) for the year 2008. - Figure S6. Difference in the interhemispheric gradients of scenarios P2 to P4 relative to P1 shown for the lowermost model layer (surface up to 995 hPa) and for the year 2008. - Figure S7a. The temporal evolution of the zonal mean N2O mixing ratio (ppb) for the scenario P4 shown at 45°N for the year 2008 (the x‐axis is the day‐of‐year). - Figure S7b. Same as Figure 7a but showing the difference between scenario P4 and P1. - Tab‐delimited Table 1. - Tab‐delimited Table 2. - Tab‐delimited Table 3. - Tab‐delimited Table 4. - Tab‐delimited Table 5. - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ACH">Composition and Chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1218">Mass balance</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1610">Atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1631">Land/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1843">Land/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3322">Land/atmosphere interactions</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Composition and Chemistry</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D17</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A30AA400581D125D847754A71B8C7EC9B9ABFCDB</identifier>
<identifier type="ark">ark:/67375/WNG-XS1P6007-1</identifier>
<identifier type="DOI">10.1029/2011JD015815</identifier>
<identifier type="ArticleID">2011JD015815</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A30AA400581D125D847754A71B8C7EC9B9ABFCDB/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001E87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A30AA400581D125D847754A71B8C7EC9B9ABFCDB
   |texte=   Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024