Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3

Identifieur interne : 001D91 ( Istex/Corpus ); précédent : 001D90; suivant : 001D92

Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3

Auteurs : Lionel Martin ; Xavier Maître ; Ludovic De Rochefort ; Mathieu Sarracanie ; Marlies Friese ; Pascal Hagot ; Emmanuel Durand

Source :

RBID : ISTEX:9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC

Abstract

In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.

Url:
DOI: 10.1002/mrm.25005

Links to Exploration step

ISTEX:9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
<author>
<name sortKey="Martin, Lionel" sort="Martin, Lionel" uniqKey="Martin L" first="Lionel" last="Martin">Lionel Martin</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maitre, Xavier" sort="Maitre, Xavier" uniqKey="Maitre X" first="Xavier" last="Maître">Xavier Maître</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rochefort, Ludovic" sort="De Rochefort, Ludovic" uniqKey="De Rochefort L" first="Ludovic" last="De Rochefort">Ludovic De Rochefort</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sarracanie, Mathieu" sort="Sarracanie, Mathieu" uniqKey="Sarracanie M" first="Mathieu" last="Sarracanie">Mathieu Sarracanie</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Friese, Marlies" sort="Friese, Marlies" uniqKey="Friese M" first="Marlies" last="Friese">Marlies Friese</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Advanced Imaging, The University of Queensland, Queensland, Brisbane, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagot, Pascal" sort="Hagot, Pascal" uniqKey="Hagot P" first="Pascal" last="Hagot">Pascal Hagot</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Durand, Emmanuel" sort="Durand, Emmanuel" uniqKey="Durand E" first="Emmanuel" last="Durand">Emmanuel Durand</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire Icube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: e.durand@unistra.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1002/mrm.25005</idno>
<idno type="url">https://api.istex.fr/document/9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D91</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
<author>
<name sortKey="Martin, Lionel" sort="Martin, Lionel" uniqKey="Martin L" first="Lionel" last="Martin">Lionel Martin</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maitre, Xavier" sort="Maitre, Xavier" uniqKey="Maitre X" first="Xavier" last="Maître">Xavier Maître</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rochefort, Ludovic" sort="De Rochefort, Ludovic" uniqKey="De Rochefort L" first="Ludovic" last="De Rochefort">Ludovic De Rochefort</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sarracanie, Mathieu" sort="Sarracanie, Mathieu" uniqKey="Sarracanie M" first="Mathieu" last="Sarracanie">Mathieu Sarracanie</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Friese, Marlies" sort="Friese, Marlies" uniqKey="Friese M" first="Marlies" last="Friese">Marlies Friese</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Advanced Imaging, The University of Queensland, Queensland, Brisbane, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagot, Pascal" sort="Hagot, Pascal" uniqKey="Hagot P" first="Pascal" last="Hagot">Pascal Hagot</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Durand, Emmanuel" sort="Durand, Emmanuel" uniqKey="Durand E" first="Emmanuel" last="Durand">Emmanuel Durand</name>
<affiliation>
<mods:affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire Icube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: e.durand@unistra.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="ISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<imprint>
<biblScope unit="vol">72</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1072">1072</biblScope>
<biblScope unit="page" to="1078">1078</biblScope>
<biblScope unit="page-count">7</biblScope>
<date type="published" when="2014-10">2014-10</date>
</imprint>
<idno type="ISSN">0740-3194</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0740-3194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Lionel Martin</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xavier Maître</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ludovic de Rochefort</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mathieu Sarracanie</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marlies Friese</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
<json:string>Centre for Advanced Imaging, The University of Queensland, Queensland, Brisbane, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Pascal Hagot</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Emmanuel Durand</name>
<affiliations>
<json:string>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</json:string>
<json:string>Laboratoire Icube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France</json:string>
<json:string>E-mail: e.durand@unistra.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phase‐contrast</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>diffusion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gas</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hyperpolarized helium‐3</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>airflow velocity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phase‐contrast MRI</value>
</json:item>
</subject>
<articleId>
<json:string>MRM25005</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-GGFRVX1X-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>shortCommunication</json:string>
</originalGenre>
<abstract>In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.</abstract>
<qualityIndicators>
<score>6.411</score>
<pdfWordCount>3703</pdfWordCount>
<pdfCharCount>22636</pdfCharCount>
<pdfVersion>1.5</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>612 x 809.972 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>59</abstractWordCount>
<abstractCharCount>468</abstractCharCount>
<keywordCount>7</keywordCount>
</qualityIndicators>
<title>Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
<genre>
<json:string>brief-communication</json:string>
</genre>
<host>
<title>Magnetic Resonance in Medicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1522-2594</json:string>
</doi>
<issn>
<json:string>0740-3194</json:string>
</issn>
<eissn>
<json:string>1522-2594</json:string>
</eissn>
<publisherId>
<json:string>MRM</json:string>
</publisherId>
<volume>72</volume>
<issue>4</issue>
<pages>
<first>1072</first>
<last>1078</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Note</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/WNG-GGFRVX1X-4</json:string>
</ark>
<publicationDate>2014</publicationDate>
<copyrightDate>2014</copyrightDate>
<doi>
<json:string>10.1002/mrm.25005</json:string>
</doi>
<id>9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright © 2013 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2014-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="brief-communication" source="shortCommunication" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-S9SX2MFS-0">brief-communication</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="brief-communication">
<analytic>
<title level="a" type="main">Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
<title level="a" type="short">Gas Velocity Mapping</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Lionel</forename>
<surname>Martin</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Xavier</forename>
<surname>Maître</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Ludovic</forename>
<surname>Rochefort</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Mathieu</forename>
<surname>Sarracanie</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Marlies</forename>
<surname>Friese</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>Centre for Advanced Imaging</orgName>
<orgName>The University of Queensland</orgName>
<address>
<settlement type="city">Brisbane</settlement>
<region>Queensland</region>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Pascal</forename>
<surname>Hagot</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0006" role="corresp">
<persName>
<forename type="first">Emmanuel</forename>
<surname>Durand</surname>
</persName>
<affiliation>
<orgName>CNRS</orgName>
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<address>
<settlement type="city">Orsay</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>Laboratoire Icube UMR 7357</orgName>
<orgName>Fédération de Médecine Translationnelle de Strasbourg (FMTS)</orgName>
<orgName>Université de Strasbourg</orgName>
<address>
<settlement type="city">Strasbourg</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>Correspondence to: Emmanuel Durand, M.D., Ph.D., Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, 1, place de l'hôpital, BP426, F‐67091 STRASBOURG cedex, France. E‐mail: e.durand@unistra.fr</affiliation>
</author>
<idno type="istex">9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC</idno>
<idno type="ark">ark:/67375/WNG-GGFRVX1X-4</idno>
<idno type="DOI">10.1002/mrm.25005</idno>
<idno type="unit">MRM25005</idno>
<idno type="toTypesetVersion">file:MRM.MRM25005.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="pISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<idno type="book-DOI">10.1002/(ISSN)1522-2594</idno>
<idno type="book-part-DOI">10.1002/mrm.v72.4</idno>
<idno type="product">MRM</idno>
<imprint>
<biblScope unit="vol">72</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1072">1072</biblScope>
<biblScope unit="page" to="1078">1078</biblScope>
<biblScope unit="page-count">7</biblScope>
<date type="published" when="2014-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main"> Purpose
<p>In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.</p>
Theory and Methods
<p>This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T
<hi rend="subscript">2</hi>
*. Experimental validation using hyperpolarized
<hi rend="superscript">3</hi>
He diluted in various buffer gases (
<hi rend="superscript">4</hi>
He, N
<hi rend="subscript">2</hi>
, and SF
<hi rend="subscript">6</hi>
) is presented at 1.5 Tesla (T) in a straight pipe.</p>
Results
<p>Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF
<hi rend="subscript">6</hi>
buffered gas.</p>
Conclusion
<p>The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="mrm25005-kwd-0001">phase‐contrast</term>
<term xml:id="mrm25005-kwd-0002">flow</term>
<term xml:id="mrm25005-kwd-0003">diffusion</term>
<term xml:id="mrm25005-kwd-0004">gas</term>
<term xml:id="mrm25005-kwd-0005">hyperpolarized helium‐3</term>
<term xml:id="mrm25005-kwd-0006">airflow velocity</term>
<term xml:id="mrm25005-kwd-0007">phase‐contrast MRI</term>
</keywords>
<keywords rend="articleCategory">
<term>Note</term>
</keywords>
<keywords rend="tocHeading1">
<term>Maging Methodology—Notes</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="mrm25005">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)1522-2594</doi>
<issn type="print">0740-3194</issn>
<issn type="electronic">1522-2594</issn>
<idGroup>
<id type="product" value="MRM"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MAGNETIC RESONANCE IN MEDICINE">Magnetic Resonance in Medicine</title>
<title type="short">Magn. Reson. Med.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/mrm.v72.4</doi>
<copyright ownership="publisher">Copyright © 2013 Wiley Periodicals, Inc.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="72">72</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2014-10">October 2014</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="200" type="shortCommunication" status="forIssue">
<doi>10.1002/mrm.25005</doi>
<idGroup>
<id type="unit" value="MRM25005"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Note</title>
<title type="tocHeading1">Maging Methodology—Notes</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2013 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2013-06-11"></event>
<event type="manuscriptRevised" date="2013-09-05"></event>
<event type="manuscriptAccepted" date="2013-09-27"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2013-10-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.4.4 mode:FullText" date="2015-04-13"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-11-11"></event>
<event type="publishedOnlineFinalForm" date="2014-09-16"></event>
<event type="firstOnline" date="2013-11-11"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-08"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1072</numbering>
<numbering type="pageLast">1078</numbering>
</numberingGroup>
<correspondenceTo>Correspondence to: Emmanuel Durand, M.D., Ph.D., Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, 1, place de l'hôpital, BP426, F‐67091 STRASBOURG cedex, France. E‐mail:
<email>e.durand@unistra.fr</email>
</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">APPENDIX</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:MRM.MRM25005.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
<title type="short">Gas Velocity Mapping</title>
<title type="shortAuthors">Martin et al.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="mrm25005-cr-0001" affiliationRef="#mrm25005-aff-0001">
<personName>
<givenNames>Lionel</givenNames>
<familyName>Martin</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0002" affiliationRef="#mrm25005-aff-0001">
<personName>
<givenNames>Xavier</givenNames>
<familyName>Maître</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0003" affiliationRef="#mrm25005-aff-0001">
<personName>
<givenNames>Ludovic</givenNames>
<familyNamePrefix>de</familyNamePrefix>
<familyName>Rochefort</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0004" affiliationRef="#mrm25005-aff-0001">
<personName>
<givenNames>Mathieu</givenNames>
<familyName>Sarracanie</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0005" affiliationRef="#mrm25005-aff-0001 #mrm25005-aff-0002">
<personName>
<givenNames>Marlies</givenNames>
<familyName>Friese</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0006" affiliationRef="#mrm25005-aff-0001">
<personName>
<givenNames>Pascal</givenNames>
<familyName>Hagot</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="mrm25005-cr-0007" affiliationRef="#mrm25005-aff-0001 #mrm25005-aff-0003" corresponding="yes">
<personName>
<givenNames>Emmanuel</givenNames>
<familyName>Durand</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="mrm25005-aff-0001" countryCode="FR" type="organization">
<orgName>IR4M (UMR8081) Univ Paris‐Sud</orgName>
<orgDiv>CNRS</orgDiv>
<address>
<city>Orsay</city>
<country>France</country>
</address>
</affiliation>
<affiliation xml:id="mrm25005-aff-0002" countryCode="AU" type="organization">
<orgDiv>Centre for Advanced Imaging</orgDiv>
<orgName>The University of Queensland</orgName>
<address>
<city>Brisbane</city>
<countryPart>Queensland</countryPart>
<country>Australia</country>
</address>
</affiliation>
<affiliation xml:id="mrm25005-aff-0003" countryCode="FR" type="organization">
<orgDiv>Laboratoire Icube UMR 7357</orgDiv>
<orgDiv>Fédération de Médecine Translationnelle de Strasbourg (FMTS)</orgDiv>
<orgName>Université de Strasbourg</orgName>
<address>
<city>Strasbourg</city>
<country>France</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup>
<keyword xml:id="mrm25005-kwd-0001">phase‐contrast</keyword>
<keyword xml:id="mrm25005-kwd-0002">flow</keyword>
<keyword xml:id="mrm25005-kwd-0003">diffusion</keyword>
<keyword xml:id="mrm25005-kwd-0004">gas</keyword>
<keyword xml:id="mrm25005-kwd-0005">hyperpolarized helium‐3</keyword>
<keyword xml:id="mrm25005-kwd-0006">airflow velocity</keyword>
<keyword xml:id="mrm25005-kwd-0007">phase‐contrast MRI</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<section xml:id="mrm25005-sec-0001">
<title type="main">Purpose</title>
<p>In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.</p>
</section>
<section xml:id="mrm25005-sec-0002">
<title type="main">Theory and Methods</title>
<p>This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T
<sub>2</sub>
*. Experimental validation using hyperpolarized
<sup>3</sup>
He diluted in various buffer gases (
<sup>4</sup>
He, N
<sub>2</sub>
, and SF
<sub>6</sub>
) is presented at 1.5 Tesla (T) in a straight pipe.</p>
</section>
<section xml:id="mrm25005-sec-0003">
<title type="main">Results</title>
<p>Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF
<sub>6</sub>
buffered gas.</p>
</section>
<section xml:id="mrm25005-sec-0004">
<title type="main">Conclusion</title>
<p>The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</p>
</section>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Gas Velocity Mapping</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lionel</namePart>
<namePart type="family">Martin</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Maître</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ludovic</namePart>
<namePart type="family">de Rochefort</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">Sarracanie</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marlies</namePart>
<namePart type="family">Friese</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<affiliation>Centre for Advanced Imaging, The University of Queensland, Queensland, Brisbane, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascal</namePart>
<namePart type="family">Hagot</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Durand</namePart>
<affiliation>CNRS, IR4M (UMR8081) Univ Paris‐Sud, Orsay, France</affiliation>
<affiliation>Laboratoire Icube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France</affiliation>
<affiliation>E-mail: e.durand@unistra.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="brief-communication" displayLabel="shortCommunication" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-S9SX2MFS-0">brief-communication</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2014-10</dateIssued>
<dateCreated encoding="w3cdtf">2013-10-17</dateCreated>
<dateCaptured encoding="w3cdtf">2013-06-11</dateCaptured>
<dateValid encoding="w3cdtf">2013-09-27</dateValid>
<copyrightDate encoding="w3cdtf">2014</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.</abstract>
<abstract>This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe.</abstract>
<abstract>Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas.</abstract>
<abstract>The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</abstract>
<subject>
<genre>keywords</genre>
<topic>phase‐contrast</topic>
<topic>flow</topic>
<topic>diffusion</topic>
<topic>gas</topic>
<topic>hyperpolarized helium‐3</topic>
<topic>airflow velocity</topic>
<topic>phase‐contrast MRI</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Magnetic Resonance in Medicine</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Magn. Reson. Med.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Note</topic>
</subject>
<identifier type="ISSN">0740-3194</identifier>
<identifier type="eISSN">1522-2594</identifier>
<identifier type="DOI">10.1002/(ISSN)1522-2594</identifier>
<identifier type="PublisherID">MRM</identifier>
<part>
<date>2014</date>
<detail type="volume">
<caption>vol.</caption>
<number>72</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1072</start>
<end>1078</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC</identifier>
<identifier type="ark">ark:/67375/WNG-GGFRVX1X-4</identifier>
<identifier type="DOI">10.1002/mrm.25005</identifier>
<identifier type="ArticleID">MRM25005</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2013 Wiley Periodicals, Inc.Copyright © 2013 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9DEE35CEDDEC7AE0FB484C64EB8A3DD0C436A2FC
   |texte=   Phase‐contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium‐3
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024