Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aggregation and species coexistence of ectoparasites of marine fishes

Identifieur interne : 001C95 ( Istex/Corpus ); précédent : 001C94; suivant : 001C96

Aggregation and species coexistence of ectoparasites of marine fishes

Auteurs : Serge Morand ; Robert Poulin ; Klaus Rohde ; Craig Hayward

Source :

RBID : ISTEX:9878A610E035E72500811000B75ABDCD7F3DAD60

English descriptors

Abstract

Abstract: Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.

Url:
DOI: 10.1016/S0020-7519(99)00029-6

Links to Exploration step

ISTEX:9878A610E035E72500811000B75ABDCD7F3DAD60

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Aggregation and species coexistence of ectoparasites of marine fishes</title>
<author>
<name sortKey="Morand, Serge" sort="Morand, Serge" uniqKey="Morand S" first="Serge" last="Morand">Serge Morand</name>
<affiliation>
<mods:affiliation>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poulin, Robert" sort="Poulin, Robert" uniqKey="Poulin R" first="Robert" last="Poulin">Robert Poulin</name>
<affiliation>
<mods:affiliation>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rohde, Klaus" sort="Rohde, Klaus" uniqKey="Rohde K" first="Klaus" last="Rohde">Klaus Rohde</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Craig" sort="Hayward, Craig" uniqKey="Hayward C" first="Craig" last="Hayward">Craig Hayward</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9878A610E035E72500811000B75ABDCD7F3DAD60</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0020-7519(99)00029-6</idno>
<idno type="url">https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C95</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Aggregation and species coexistence of ectoparasites of marine fishes</title>
<author>
<name sortKey="Morand, Serge" sort="Morand, Serge" uniqKey="Morand S" first="Serge" last="Morand">Serge Morand</name>
<affiliation>
<mods:affiliation>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poulin, Robert" sort="Poulin, Robert" uniqKey="Poulin R" first="Robert" last="Poulin">Robert Poulin</name>
<affiliation>
<mods:affiliation>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rohde, Klaus" sort="Rohde, Klaus" uniqKey="Rohde K" first="Klaus" last="Rohde">Klaus Rohde</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Craig" sort="Hayward, Craig" uniqKey="Hayward C" first="Craig" last="Hayward">Craig Hayward</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal for Parasitology</title>
<title level="j" type="abbrev">PARA</title>
<idno type="ISSN">0020-7519</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="663">663</biblScope>
<biblScope unit="page" to="672">672</biblScope>
</imprint>
<idno type="ISSN">0020-7519</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0020-7519</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aggregated</term>
<term>Aggregated utilisation</term>
<term>Aggregation</term>
<term>Aggregation model</term>
<term>Body size</term>
<term>Chicago press</term>
<term>Community ecology</term>
<term>Comparative analysis</term>
<term>Component community parasite species richness</term>
<term>Component parasite species richness</term>
<term>Component species richness</term>
<term>Curvilinear relationship</term>
<term>Ecol</term>
<term>Ecological communities</term>
<term>Ecology</term>
<term>Ectoparasite</term>
<term>Ectoparasite communities</term>
<term>Ectoparasite species richness</term>
<term>Fragmented resources</term>
<term>Gill</term>
<term>Gill parasites</term>
<term>Helminth</term>
<term>Host phylogeny</term>
<term>Independent contrasts</term>
<term>Infracommunity</term>
<term>Infracommunity parasite species richness</term>
<term>Infracommunity species richness</term>
<term>Ives</term>
<term>Local species richness</term>
<term>Mate location</term>
<term>Maximum infracommunity parasite species richness</term>
<term>Morand</term>
<term>Negative aggregation</term>
<term>Niche</term>
<term>Niche restriction</term>
<term>Parasite</term>
<term>Parasite abundance</term>
<term>Parasite aggregation</term>
<term>Parasite communities</term>
<term>Parasite species</term>
<term>Parasite species richness</term>
<term>Parasitology</term>
<term>Phylogeny</term>
<term>Positive relationship</term>
<term>Poulin</term>
<term>Relative strength</term>
<term>Richness</term>
<term>Rohde</term>
<term>Shes</term>
<term>Species coexistence</term>
<term>Species diversity</term>
<term>Species richness</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aggregated</term>
<term>Aggregated utilisation</term>
<term>Aggregation</term>
<term>Aggregation model</term>
<term>Body size</term>
<term>Chicago press</term>
<term>Community ecology</term>
<term>Comparative analysis</term>
<term>Component community parasite species richness</term>
<term>Component parasite species richness</term>
<term>Component species richness</term>
<term>Curvilinear relationship</term>
<term>Ecol</term>
<term>Ecological communities</term>
<term>Ecology</term>
<term>Ectoparasite</term>
<term>Ectoparasite communities</term>
<term>Ectoparasite species richness</term>
<term>Fragmented resources</term>
<term>Gill</term>
<term>Gill parasites</term>
<term>Helminth</term>
<term>Host phylogeny</term>
<term>Independent contrasts</term>
<term>Infracommunity</term>
<term>Infracommunity parasite species richness</term>
<term>Infracommunity species richness</term>
<term>Ives</term>
<term>Local species richness</term>
<term>Mate location</term>
<term>Maximum infracommunity parasite species richness</term>
<term>Morand</term>
<term>Negative aggregation</term>
<term>Niche</term>
<term>Niche restriction</term>
<term>Parasite</term>
<term>Parasite abundance</term>
<term>Parasite aggregation</term>
<term>Parasite communities</term>
<term>Parasite species</term>
<term>Parasite species richness</term>
<term>Parasitology</term>
<term>Phylogeny</term>
<term>Positive relationship</term>
<term>Poulin</term>
<term>Relative strength</term>
<term>Richness</term>
<term>Rohde</term>
<term>Shes</term>
<term>Species coexistence</term>
<term>Species diversity</term>
<term>Species richness</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>parasite</json:string>
<json:string>aggregation</json:string>
<json:string>ectoparasite</json:string>
<json:string>rohde</json:string>
<json:string>infracommunity</json:string>
<json:string>parasitology</json:string>
<json:string>phylogeny</json:string>
<json:string>morand</json:string>
<json:string>parasite species richness</json:string>
<json:string>ecol</json:string>
<json:string>ives</json:string>
<json:string>ecology</json:string>
<json:string>component parasite species richness</json:string>
<json:string>species coexistence</json:string>
<json:string>richness</json:string>
<json:string>parasite communities</json:string>
<json:string>helminth</json:string>
<json:string>aggregated</json:string>
<json:string>shes</json:string>
<json:string>ectoparasite communities</json:string>
<json:string>infracommunity species richness</json:string>
<json:string>positive relationship</json:string>
<json:string>species richness</json:string>
<json:string>parasite species</json:string>
<json:string>poulin</json:string>
<json:string>infracommunity parasite species richness</json:string>
<json:string>ecological communities</json:string>
<json:string>aggregation model</json:string>
<json:string>body size</json:string>
<json:string>niche restriction</json:string>
<json:string>component community parasite species richness</json:string>
<json:string>maximum infracommunity parasite species richness</json:string>
<json:string>host phylogeny</json:string>
<json:string>parasite abundance</json:string>
<json:string>independent contrasts</json:string>
<json:string>local species richness</json:string>
<json:string>curvilinear relationship</json:string>
<json:string>species diversity</json:string>
<json:string>comparative analysis</json:string>
<json:string>negative aggregation</json:string>
<json:string>ectoparasite species richness</json:string>
<json:string>chicago press</json:string>
<json:string>gill parasites</json:string>
<json:string>mate location</json:string>
<json:string>parasite aggregation</json:string>
<json:string>component species richness</json:string>
<json:string>relative strength</json:string>
<json:string>aggregated utilisation</json:string>
<json:string>community ecology</json:string>
<json:string>fragmented resources</json:string>
<json:string>gill</json:string>
<json:string>niche</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Serge Morand</name>
<affiliations>
<json:string>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</json:string>
<json:string>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Poulin</name>
<affiliations>
<json:string>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>Klaus Rohde</name>
<affiliations>
<json:string>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Craig Hayward</name>
<affiliations>
<json:string>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Ectoparasite communities</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fish</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Species richness</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Species coexistence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Interspecific aggregation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Intraspecific aggregation</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-50CZZGKS-K</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>263</abstractWordCount>
<abstractCharCount>1948</abstractCharCount>
<keywordCount>6</keywordCount>
<score>8.995</score>
<pdfWordCount>3995</pdfWordCount>
<pdfCharCount>27182</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>543 x 710 pts</pdfPageSize>
</qualityIndicators>
<title>Aggregation and species coexistence of ectoparasites of marine fishes</title>
<pmid>
<json:string>10404260</json:string>
</pmid>
<pii>
<json:string>S0020-7519(99)00029-6</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal for Parasitology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>0020-7519</json:string>
</issn>
<pii>
<json:string>S0020-7519(00)X0049-5</json:string>
</pii>
<volume>29</volume>
<issue>5</issue>
<pages>
<first>663</first>
<last>672</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1999</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Division of Zoology</json:string>
<json:string>University of New England</json:string>
<json:string>Society for Parasitology</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>Australia Received</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Dobson</json:string>
<json:string>Pierre Sasal</json:string>
<json:string>The</json:string>
<json:string>Jean-Franc</json:string>
<json:string>Cornell</json:string>
<json:string>Anne Ducreux</json:string>
<json:string>Roberts</json:string>
<json:string>Ives</json:string>
<json:string>Holmes</json:string>
<json:string>Lawton</json:string>
</persName>
<placeName>
<json:string>Perpignan</json:string>
<json:string>Dunedin</json:string>
<json:string>New Zealand</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[34]</json:string>
<json:string>[29]</json:string>
<json:string>[6]</json:string>
<json:string>[33]</json:string>
<json:string>[8]</json:string>
<json:string>[16, 45]</json:string>
<json:string>Geets et al. [46]</json:string>
<json:string>[43]</json:string>
<json:string>[22, 24]</json:string>
<json:string>[27]</json:string>
<json:string>[3]</json:string>
<json:string>[31]</json:string>
<json:string>[8, 9]</json:string>
<json:string>[37]</json:string>
<json:string>[30]</json:string>
<json:string>[7]</json:string>
<json:string>S. Morand et al.</json:string>
<json:string>[25]</json:string>
<json:string>Rohde et al. [44]</json:string>
<json:string>[9]</json:string>
<json:string>[35]</json:string>
<json:string>Rohde et al. [25]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-50CZZGKS-K</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - parasitology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - mycology & parasitology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Infectious Diseases</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Parasitology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0020-7519(99)00029-6</json:string>
</doi>
<id>9878A610E035E72500811000B75ABDCD7F3DAD60</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Aggregation and species coexistence of ectoparasites of marine fishes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Australian Society for Parasitology</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Relationships between contrasts in fish body size and (A) contrasts in ectoparasite species richness and (B) contrasts in ectoparasite abundance. Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 2: Relationships between component ectoparasite species richness and maximum infracommunity parasite species richness using cross-species values. A curvilinear relationship is found when using all 36 communities (Y= −4.815+4.87×ln(X); P<0.0001, R2=0.69), whereas a linear relationship gives the best fit when the upper right point is removed (Y=0.057+0.623×X; P<0.0001, R2=0.74).</note>
<note type="content">Fig. 3: Relationships between component ectoparasite species richness and maximum infracommunity parasite species richness (A) and mean infracommunity species richness (B). Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 4: Frequency distributions of (A) mean intraspecific aggregations J; (B) mean interspecific aggregation C and (C) the mean relative strength of intraspecific aggregation versus interspecific aggregation A (in ln) (mean values calculated for each of 36 communities of gills ectoparasites).</note>
<note type="content">Fig. 5: Relationships between interspecific aggregation C (mean values) and component parasite species richness. Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 6: Relationships between contrasts in relative strength of intraspecific aggregation versus interspecific aggregation (mean value in ln calculated for each of 36 communities of gills ectoparasites) and (A) contrasts in component species richness (B) contrasts in mean infracommunity species richness and (C) contrasts in residuals in mean infracommunity species richness (controlled for fish body size). Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Aggregation and species coexistence of ectoparasites of marine fishes</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Serge</forename>
<surname>Morand</surname>
</persName>
<affiliation>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</affiliation>
<affiliation>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Robert</forename>
<surname>Poulin</surname>
</persName>
<affiliation>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Klaus</forename>
<surname>Rohde</surname>
</persName>
<affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Craig</forename>
<surname>Hayward</surname>
</persName>
<affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</affiliation>
</author>
<idno type="istex">9878A610E035E72500811000B75ABDCD7F3DAD60</idno>
<idno type="DOI">10.1016/S0020-7519(99)00029-6</idno>
<idno type="PII">S0020-7519(99)00029-6</idno>
</analytic>
<monogr>
<title level="j">International Journal for Parasitology</title>
<title level="j" type="abbrev">PARA</title>
<idno type="pISSN">0020-7519</idno>
<idno type="PII">S0020-7519(00)X0049-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="663">663</biblScope>
<biblScope unit="page" to="672">672</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Ectoparasite communities</term>
</item>
<item>
<term>Fish</term>
</item>
<item>
<term>Species richness</term>
</item>
<item>
<term>Species coexistence</term>
</item>
<item>
<term>Interspecific aggregation</term>
</item>
<item>
<term>Intraspecific aggregation</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-03-16">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>PARA</jid>
<aid>1151</aid>
<ce:pii>S0020-7519(99)00029-6</ce:pii>
<ce:doi>10.1016/S0020-7519(99)00029-6</ce:doi>
<ce:copyright year="1999" type="society">Australian Society for Parasitology</ce:copyright>
</item-info>
<head>
<ce:title>Aggregation and species coexistence of ectoparasites of marine fishes</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Serge</ce:given-name>
<ce:surname>Morand</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Robert</ce:given-name>
<ce:surname>Poulin</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Klaus</ce:given-name>
<ce:surname>Rohde</ce:surname>
<ce:cross-ref refid="AFF3">c</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Craig</ce:given-name>
<ce:surname>Hayward</ce:surname>
<ce:cross-ref refid="AFF3">c</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="12" month="1" year="1999"></ce:date-received>
<ce:date-revised day="16" month="3" year="1999"></ce:date-revised>
<ce:date-accepted day="16" month="3" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Ectoparasite communities</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Fish</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Species richness</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Species coexistence</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Interspecific aggregation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Intraspecific aggregation</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Aggregation and species coexistence of ectoparasites of marine fishes</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Aggregation and species coexistence of ectoparasites of marine fishes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Serge</namePart>
<namePart type="family">Morand</namePart>
<affiliation>Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, (U.M.R. 5555 du C.N.R.S.), Université de Perpignan, F-66860 Perpignan Cedex, France</affiliation>
<affiliation>Corresponding author. Tel: +33 4 68 66 21 87; fax: +33 4 68 66 22 81; e-mail: morand@univ-perp.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Poulin</namePart>
<affiliation>Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klaus</namePart>
<namePart type="family">Rohde</namePart>
<affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Hayward</namePart>
<affiliation>School of Biological Sciences, Division of Zoology, University of New England, Armidale, NSW 2351, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1999-03-16</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the `aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the `aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.</abstract>
<note type="content">Fig. 1: Relationships between contrasts in fish body size and (A) contrasts in ectoparasite species richness and (B) contrasts in ectoparasite abundance. Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 2: Relationships between component ectoparasite species richness and maximum infracommunity parasite species richness using cross-species values. A curvilinear relationship is found when using all 36 communities (Y= −4.815+4.87×ln(X); P<0.0001, R2=0.69), whereas a linear relationship gives the best fit when the upper right point is removed (Y=0.057+0.623×X; P<0.0001, R2=0.74).</note>
<note type="content">Fig. 3: Relationships between component ectoparasite species richness and maximum infracommunity parasite species richness (A) and mean infracommunity species richness (B). Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 4: Frequency distributions of (A) mean intraspecific aggregations J; (B) mean interspecific aggregation C and (C) the mean relative strength of intraspecific aggregation versus interspecific aggregation A (in ln) (mean values calculated for each of 36 communities of gills ectoparasites).</note>
<note type="content">Fig. 5: Relationships between interspecific aggregation C (mean values) and component parasite species richness. Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<note type="content">Fig. 6: Relationships between contrasts in relative strength of intraspecific aggregation versus interspecific aggregation (mean value in ln calculated for each of 36 communities of gills ectoparasites) and (A) contrasts in component species richness (B) contrasts in mean infracommunity species richness and (C) contrasts in residuals in mean infracommunity species richness (controlled for fish body size). Nineteen contrasts were derived from a phylogeny of 36 marine fish species.</note>
<subject>
<genre>Keywords</genre>
<topic>Ectoparasite communities</topic>
<topic>Fish</topic>
<topic>Species richness</topic>
<topic>Species coexistence</topic>
<topic>Interspecific aggregation</topic>
<topic>Intraspecific aggregation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal for Parasitology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>PARA</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199905</dateIssued>
</originInfo>
<identifier type="ISSN">0020-7519</identifier>
<identifier type="PII">S0020-7519(00)X0049-5</identifier>
<part>
<date>199905</date>
<detail type="volume">
<number>29</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>5</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>655</start>
<end>800</end>
</extent>
<extent unit="pages">
<start>663</start>
<end>672</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">9878A610E035E72500811000B75ABDCD7F3DAD60</identifier>
<identifier type="ark">ark:/67375/6H6-50CZZGKS-K</identifier>
<identifier type="DOI">10.1016/S0020-7519(99)00029-6</identifier>
<identifier type="PII">S0020-7519(99)00029-6</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Australian Society for Parasitology</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Australian Society for Parasitology, ©1999</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/9878A610E035E72500811000B75ABDCD7F3DAD60/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001C95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9878A610E035E72500811000B75ABDCD7F3DAD60
   |texte=   Aggregation and species coexistence of ectoparasites of marine fishes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024