Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data

Identifieur interne : 001347 ( Istex/Corpus ); précédent : 001346; suivant : 001348

Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data

Auteurs : Lin Wu ; Marc Bocquet ; Thomas Lauvaux ; Frédéric Chevallier ; Peter Rayner ; Kenneth Davis

Source :

RBID : ISTEX:679DE84C4EA57963368ED1CDF6D16410CC063E92

English descriptors

Abstract

The inversion of CO2 surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO2 concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations d (DFS/d < 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.

Url:
DOI: 10.1029/2011JD016198

Links to Exploration step

ISTEX:679DE84C4EA57963368ED1CDF6D16410CC063E92

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
<author>
<name sortKey="Wu, Lin" sort="Wu, Lin" uniqKey="Wu L" first="Lin" last="Wu">Lin Wu</name>
<affiliation>
<mods:affiliation>E-mail: Lin.Wu@cerea.enpc.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Lin.Wu@cerea.enpc.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bocquet, Marc" sort="Bocquet, Marc" uniqKey="Bocquet M" first="Marc" last="Bocquet">Marc Bocquet</name>
<affiliation>
<mods:affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lauvaux, Thomas" sort="Lauvaux, Thomas" uniqKey="Lauvaux T" first="Thomas" last="Lauvaux">Thomas Lauvaux</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, Frederic" sort="Chevallier, Frederic" uniqKey="Chevallier F" first="Frédéric" last="Chevallier">Frédéric Chevallier</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, CEA‐CNRS‐UVSQ, IPSL, Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rayner, Peter" sort="Rayner, Peter" uniqKey="Rayner P" first="Peter" last="Rayner">Peter Rayner</name>
<affiliation>
<mods:affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Kenneth" sort="Davis, Kenneth" uniqKey="Davis K" first="Kenneth" last="Davis">Kenneth Davis</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:679DE84C4EA57963368ED1CDF6D16410CC063E92</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2011JD016198</idno>
<idno type="url">https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001347</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001347</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
<author>
<name sortKey="Wu, Lin" sort="Wu, Lin" uniqKey="Wu L" first="Lin" last="Wu">Lin Wu</name>
<affiliation>
<mods:affiliation>E-mail: Lin.Wu@cerea.enpc.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Lin.Wu@cerea.enpc.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bocquet, Marc" sort="Bocquet, Marc" uniqKey="Bocquet M" first="Marc" last="Bocquet">Marc Bocquet</name>
<affiliation>
<mods:affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lauvaux, Thomas" sort="Lauvaux, Thomas" uniqKey="Lauvaux T" first="Thomas" last="Lauvaux">Thomas Lauvaux</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevallier, Frederic" sort="Chevallier, Frederic" uniqKey="Chevallier F" first="Frédéric" last="Chevallier">Frédéric Chevallier</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Climat et de l'Environnement, CEA‐CNRS‐UVSQ, IPSL, Gif‐sur‐Yvette, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rayner, Peter" sort="Rayner, Peter" uniqKey="Rayner P" first="Peter" last="Rayner">Peter Rayner</name>
<affiliation>
<mods:affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Kenneth" sort="Davis, Kenneth" uniqKey="Davis K" first="Kenneth" last="Davis">Kenneth Davis</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">116</biblScope>
<biblScope unit="issue">D21</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2011-11-16">2011-11-16</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive</term>
<term>Aggregation</term>
<term>Aggregation effect</term>
<term>Aggregation error</term>
<term>Aggregation errors</term>
<term>American carbon program</term>
<term>Atmos</term>
<term>Atmospheric transport</term>
<term>Background error</term>
<term>Background error covariance matrix</term>
<term>Background errors</term>
<term>Background fluxes</term>
<term>Balgovind</term>
<term>Balgovind form</term>
<term>Bayesian</term>
<term>Binary trees</term>
<term>Blue analysis</term>
<term>Bocquet</term>
<term>Carbon fluxes</term>
<term>Carbon inversions</term>
<term>Chem</term>
<term>Chevallier</term>
<term>Concentration observations</term>
<term>Correlation length</term>
<term>Covariance</term>
<term>Diagonal</term>
<term>Diagonal case</term>
<term>Different scales</term>
<term>Distant regions</term>
<term>Effective degrees</term>
<term>Finest grid</term>
<term>Finest scale</term>
<term>First guesses</term>
<term>Fisher criterion</term>
<term>Flux representation</term>
<term>Flux variables</term>
<term>Flux variations</term>
<term>Flux vector</term>
<term>Geophys</term>
<term>Gerbig</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Hbht</term>
<term>Inconsistent innovation statistics</term>
<term>Infg</term>
<term>Information gain</term>
<term>Innovation vector</term>
<term>Inversion</term>
<term>Inversion errors</term>
<term>Inversion figure</term>
<term>Inversion performance</term>
<term>Inversion results</term>
<term>Inverted</term>
<term>Inverted fluxes</term>
<term>Lagrangian</term>
<term>Lauvaux</term>
<term>Matrix</term>
<term>Mesoscale</term>
<term>Mesoscale inversions</term>
<term>Meteorological conditions</term>
<term>Multiscale</term>
<term>Multiscale grids</term>
<term>Multiscale representation</term>
<term>Multiscale representations</term>
<term>Observation sites</term>
<term>Observational</term>
<term>Observational error</term>
<term>Observational error covariance matrices</term>
<term>Observational error covariance matrix</term>
<term>Optimal grids</term>
<term>Optimal multiscale grids</term>
<term>Optimal multiscale representation</term>
<term>Optimal multiscale representations</term>
<term>Optimal representation</term>
<term>Optimal representations</term>
<term>Optimization</term>
<term>Pennsylvania state university</term>
<term>Perturbation</term>
<term>Peylin</term>
<term>Phys</term>
<term>Preliminary tests</term>
<term>Prolongation</term>
<term>Prolongation operator</term>
<term>Rayner</term>
<term>Realistic correlations</term>
<term>Regular grid</term>
<term>Regular grids</term>
<term>Representation</term>
<term>Representation optimization</term>
<term>Restriction operator</term>
<term>Rmse</term>
<term>Spatial correlations</term>
<term>Spatiotemporal</term>
<term>Standard deviation</term>
<term>Surface fluxes</term>
<term>Synthetic data</term>
<term>Temporal correlations</term>
<term>Time period</term>
<term>Total number</term>
<term>Transport errors</term>
<term>Transport models</term>
<term>True reference fluxes</term>
<term>Unknown fluxes</term>
<term>Variance</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adaptive</term>
<term>Aggregation</term>
<term>Aggregation effect</term>
<term>Aggregation error</term>
<term>Aggregation errors</term>
<term>American carbon program</term>
<term>Atmos</term>
<term>Atmospheric transport</term>
<term>Background error</term>
<term>Background error covariance matrix</term>
<term>Background errors</term>
<term>Background fluxes</term>
<term>Balgovind</term>
<term>Balgovind form</term>
<term>Bayesian</term>
<term>Binary trees</term>
<term>Blue analysis</term>
<term>Bocquet</term>
<term>Carbon fluxes</term>
<term>Carbon inversions</term>
<term>Chem</term>
<term>Chevallier</term>
<term>Concentration observations</term>
<term>Correlation length</term>
<term>Covariance</term>
<term>Diagonal</term>
<term>Diagonal case</term>
<term>Different scales</term>
<term>Distant regions</term>
<term>Effective degrees</term>
<term>Finest grid</term>
<term>Finest scale</term>
<term>First guesses</term>
<term>Fisher criterion</term>
<term>Flux representation</term>
<term>Flux variables</term>
<term>Flux variations</term>
<term>Flux vector</term>
<term>Geophys</term>
<term>Gerbig</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Hbht</term>
<term>Inconsistent innovation statistics</term>
<term>Infg</term>
<term>Information gain</term>
<term>Innovation vector</term>
<term>Inversion</term>
<term>Inversion errors</term>
<term>Inversion figure</term>
<term>Inversion performance</term>
<term>Inversion results</term>
<term>Inverted</term>
<term>Inverted fluxes</term>
<term>Lagrangian</term>
<term>Lauvaux</term>
<term>Matrix</term>
<term>Mesoscale</term>
<term>Mesoscale inversions</term>
<term>Meteorological conditions</term>
<term>Multiscale</term>
<term>Multiscale grids</term>
<term>Multiscale representation</term>
<term>Multiscale representations</term>
<term>Observation sites</term>
<term>Observational</term>
<term>Observational error</term>
<term>Observational error covariance matrices</term>
<term>Observational error covariance matrix</term>
<term>Optimal grids</term>
<term>Optimal multiscale grids</term>
<term>Optimal multiscale representation</term>
<term>Optimal multiscale representations</term>
<term>Optimal representation</term>
<term>Optimal representations</term>
<term>Optimization</term>
<term>Pennsylvania state university</term>
<term>Perturbation</term>
<term>Peylin</term>
<term>Phys</term>
<term>Preliminary tests</term>
<term>Prolongation</term>
<term>Prolongation operator</term>
<term>Rayner</term>
<term>Realistic correlations</term>
<term>Regular grid</term>
<term>Regular grids</term>
<term>Representation</term>
<term>Representation optimization</term>
<term>Restriction operator</term>
<term>Rmse</term>
<term>Spatial correlations</term>
<term>Spatiotemporal</term>
<term>Standard deviation</term>
<term>Surface fluxes</term>
<term>Synthetic data</term>
<term>Temporal correlations</term>
<term>Time period</term>
<term>Total number</term>
<term>Transport errors</term>
<term>Transport models</term>
<term>True reference fluxes</term>
<term>Unknown fluxes</term>
<term>Variance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The inversion of CO2 surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO2 concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations d (DFS/d < 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>grid</json:string>
<json:string>multiscale</json:string>
<json:string>balgovind</json:string>
<json:string>inversion</json:string>
<json:string>aggregation</json:string>
<json:string>finest scale</json:string>
<json:string>covariance</json:string>
<json:string>lauvaux</json:string>
<json:string>background errors</json:string>
<json:string>grid cells</json:string>
<json:string>rmse</json:string>
<json:string>bocquet</json:string>
<json:string>spatiotemporal</json:string>
<json:string>optimal representations</json:string>
<json:string>aggregation errors</json:string>
<json:string>matrix</json:string>
<json:string>flux representation</json:string>
<json:string>aggregation error</json:string>
<json:string>inverted fluxes</json:string>
<json:string>infg</json:string>
<json:string>adaptive</json:string>
<json:string>regular grids</json:string>
<json:string>mesoscale</json:string>
<json:string>observation sites</json:string>
<json:string>correlation length</json:string>
<json:string>chevallier</json:string>
<json:string>optimal grids</json:string>
<json:string>phys</json:string>
<json:string>atmos</json:string>
<json:string>chem</json:string>
<json:string>geophys</json:string>
<json:string>gerbig</json:string>
<json:string>total number</json:string>
<json:string>rayner</json:string>
<json:string>observational error</json:string>
<json:string>peylin</json:string>
<json:string>concentration observations</json:string>
<json:string>aggregation effect</json:string>
<json:string>background fluxes</json:string>
<json:string>hbht</json:string>
<json:string>lagrangian</json:string>
<json:string>optimal representation</json:string>
<json:string>bayesian</json:string>
<json:string>surface fluxes</json:string>
<json:string>grid cell</json:string>
<json:string>multiscale representations</json:string>
<json:string>carbon inversions</json:string>
<json:string>prolongation operator</json:string>
<json:string>optimization</json:string>
<json:string>observational error covariance matrices</json:string>
<json:string>carbon fluxes</json:string>
<json:string>inversion errors</json:string>
<json:string>atmospheric transport</json:string>
<json:string>representation optimization</json:string>
<json:string>different scales</json:string>
<json:string>optimal multiscale representations</json:string>
<json:string>inversion results</json:string>
<json:string>regular grid</json:string>
<json:string>information gain</json:string>
<json:string>synthetic data</json:string>
<json:string>prolongation</json:string>
<json:string>true reference fluxes</json:string>
<json:string>temporal correlations</json:string>
<json:string>mesoscale inversions</json:string>
<json:string>observational error covariance matrix</json:string>
<json:string>flux variables</json:string>
<json:string>multiscale representation</json:string>
<json:string>preliminary tests</json:string>
<json:string>american carbon program</json:string>
<json:string>standard deviation</json:string>
<json:string>blue analysis</json:string>
<json:string>distant regions</json:string>
<json:string>balgovind form</json:string>
<json:string>optimal multiscale grids</json:string>
<json:string>diagonal</json:string>
<json:string>perturbation</json:string>
<json:string>variance</json:string>
<json:string>inverted</json:string>
<json:string>time period</json:string>
<json:string>innovation vector</json:string>
<json:string>diagonal case</json:string>
<json:string>finest grid</json:string>
<json:string>realistic correlations</json:string>
<json:string>restriction operator</json:string>
<json:string>binary trees</json:string>
<json:string>optimal multiscale representation</json:string>
<json:string>unknown fluxes</json:string>
<json:string>background error</json:string>
<json:string>spatial correlations</json:string>
<json:string>background error covariance matrix</json:string>
<json:string>inconsistent innovation statistics</json:string>
<json:string>transport models</json:string>
<json:string>multiscale grids</json:string>
<json:string>inversion performance</json:string>
<json:string>first guesses</json:string>
<json:string>flux vector</json:string>
<json:string>flux variations</json:string>
<json:string>meteorological conditions</json:string>
<json:string>inversion figure</json:string>
<json:string>effective degrees</json:string>
<json:string>fisher criterion</json:string>
<json:string>transport errors</json:string>
<json:string>pennsylvania state university</json:string>
<json:string>observational</json:string>
<json:string>representation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Lin Wu</name>
<affiliations>
<json:string>E-mail: Lin.Wu@cerea.enpc.fr</json:string>
<json:string>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</json:string>
<json:string>INRIA, Paris‐Rocquencourt Research Center, Paris, France</json:string>
<json:string>E-mail: Lin.Wu@cerea.enpc.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc Bocquet</name>
<affiliations>
<json:string>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</json:string>
<json:string>INRIA, Paris‐Rocquencourt Research Center, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Thomas Lauvaux</name>
<affiliations>
<json:string>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frédéric Chevallier</name>
<affiliations>
<json:string>Laboratoire des Sciences du Climat et de l'Environnement, CEA‐CNRS‐UVSQ, IPSL, Gif‐sur‐Yvette, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter Rayner</name>
<affiliations>
<json:string>School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kenneth Davis</name>
<affiliations>
<json:string>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>aggregation error</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>degrees of freedom for the signal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mesoscale CO2 inversion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>optimal multiscale representation</value>
</json:item>
</subject>
<articleId>
<json:string>2011JD016198</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-33N12J19-S</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The inversion of CO2 surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO2 concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations d (DFS/d > 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>9851</pdfWordCount>
<pdfCharCount>57681</pdfCharCount>
<pdfVersion>1.6</pdfVersion>
<pdfPageCount>16</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>258</abstractWordCount>
<abstractCharCount>1774</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Atmospheres</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRD</json:string>
</publisherId>
<volume>116</volume>
<issue>D21</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>Trace gases</value>
</json:item>
<json:item>
<value>Biogeochemical kinetics and reaction modeling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Biogeochemistry</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>MATHEMATICAL GEOPHYSICS</value>
</json:item>
<json:item>
<value>Inverse theory</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Data assimilation</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>FLUX REPRESENTATION FOR CO</json:string>
<json:string>North American Carbon Program Mid Continent Intensive</json:string>
<json:string>In CO</json:string>
<json:string>National Oceanic and Atmospheric Administration</json:string>
<json:string>Joint Laboratory École</json:string>
<json:string>Rocquencourt Research Center, Paris, France</json:string>
<json:string>Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania, USA</json:string>
<json:string>University of Melbourne</json:string>
<json:string>AEROCARB contributors</json:string>
<json:string>Pennsylvania State University</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>ParisTech</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>T. Lauvaux</json:string>
<json:string>K. Davis</json:string>
<json:string>J. Geophys</json:string>
<json:string>Error Parameterization</json:string>
<json:string>R. Recall</json:string>
<json:string>Frédéric Chevallier</json:string>
<json:string>M. Bocquet</json:string>
<json:string>F. Chevallier</json:string>
<json:string>Bocquet</json:string>
<json:string>Peter Rayner</json:string>
<json:string>P. Rayner</json:string>
<json:string>Marc Bocquet</json:string>
<json:string>Kenneth Davis</json:string>
<json:string>Thomas Lauvaux</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Melbourne</json:string>
<json:string>Victoria</json:string>
<json:string>France</json:string>
</placeName>
<ref_url>
<json:string>http://www.ring</json:string>
</ref_url>
<ref_bibl>
<json:string>[72]</json:string>
<json:string>Law et al., 2003</json:string>
<json:string>Schuh et al., 2010</json:string>
<json:string>[23]</json:string>
<json:string>Peylin et al., 2001</json:string>
<json:string>Chevallier et al., 2006</json:string>
<json:string>[18]</json:string>
<json:string>Peters et al., 2007</json:string>
<json:string>[71]</json:string>
<json:string>Bocquet et al. [2011]</json:string>
<json:string>Lokupitiya et al. [2009]</json:string>
<json:string>[66]</json:string>
<json:string>Chevallier et al. [2006]</json:string>
<json:string>Fan et al., 1998</json:string>
<json:string>[39]</json:string>
<json:string>Kaminski et al., 2001</json:string>
<json:string>Heaps et al. [2011]</json:string>
<json:string>[70]</json:string>
<json:string>Carouge et al. [2010]</json:string>
<json:string>Peylin et al., 2005</json:string>
<json:string>[54]</json:string>
<json:string>Bocquet and Wu, 2011</json:string>
<json:string>Gerbig et al. [2003]</json:string>
<json:string>Bocquet et al., 2011</json:string>
<json:string>Bousquet et al., 2000</json:string>
<json:string>Gerbig et al. [2006]</json:string>
<json:string>Lauvaux et al.</json:string>
<json:string>Lauvaux et al., 2011</json:string>
<json:string>Lokupitiya et al., 2009</json:string>
<json:string>[31]</json:string>
<json:string>Gerbig et al., 2003</json:string>
<json:string>Lauvaux et al., 2009b</json:string>
<json:string>[48]</json:string>
<json:string>Tolk et al., 2008</json:string>
<json:string>Balgovind et al., 1983</json:string>
<json:string>Rödenbeck et al., 2003</json:string>
<json:string>Gerbig et al.</json:string>
<json:string>Lin et al., 2003</json:string>
<json:string>[30]</json:string>
<json:string>Saide et al., 2011</json:string>
<json:string>Seibert and Frank, 2004</json:string>
<json:string>Lauvaux et al., 2009a</json:string>
<json:string>[69]</json:string>
<json:string>Skamarock et al., 2005</json:string>
<json:string>[73]</json:string>
<json:string>Tans et al., 1990</json:string>
<json:string>Carouge et al., 2010</json:string>
<json:string>[2009]</json:string>
<json:string>Michalak et al., 2004</json:string>
<json:string>Chevallier et al., 2007</json:string>
<json:string>[2]</json:string>
<json:string>Schuh et al. [2010]</json:string>
<json:string>[46]</json:string>
<json:string>Lauvaux et al., 2008</json:string>
<json:string>Gourdji et al., 2010</json:string>
<json:string>Lauvaux et al. [2011]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-33N12J19-S</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2011JD016198</json:string>
</doi>
<id>679DE84C4EA57963368ED1CDF6D16410CC063E92</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2011 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2011-11-16"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
<title level="a" type="short">FLUX REPRESENTATION FOR CO2 INVERSION</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Lin</forename>
<surname>Wu</surname>
</persName>
<email>Lin.Wu@cerea.enpc.fr</email>
<affiliation>
<orgName>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est</orgName>
<address>
<settlement type="city">Marne la Vallée</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>INRIA</orgName>
<orgName>Paris‐Rocquencourt Research Center</orgName>
<address>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Marc</forename>
<surname>Bocquet</surname>
</persName>
<affiliation>
<orgName>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est</orgName>
<address>
<settlement type="city">Marne la Vallée</settlement>
<country key="FR">France</country>
</address>
</affiliation>
<affiliation>
<orgName>INRIA</orgName>
<orgName>Paris‐Rocquencourt Research Center</orgName>
<address>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Thomas</forename>
<surname>Lauvaux</surname>
</persName>
<affiliation>
<orgName>Department of Meteorology</orgName>
<orgName>Pennsylvania State University</orgName>
<address>
<settlement type="city">University Park</settlement>
<region>Pennsylvania</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Frédéric</forename>
<surname>Chevallier</surname>
</persName>
<affiliation>
<orgName>Laboratoire des Sciences du Climat et de l'Environnement</orgName>
<orgName>CEA‐CNRS‐UVSQ, IPSL</orgName>
<address>
<settlement type="city">Gif‐sur‐Yvette</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Peter</forename>
<surname>Rayner</surname>
</persName>
<affiliation>
<orgName>School of Earth Sciences</orgName>
<orgName>University of Melbourne</orgName>
<address>
<settlement type="city">Melbourne, Victoria</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Kenneth</forename>
<surname>Davis</surname>
</persName>
<affiliation>
<orgName>Department of Meteorology</orgName>
<orgName>Pennsylvania State University</orgName>
<address>
<settlement type="city">University Park</settlement>
<region>Pennsylvania</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<idno type="istex">679DE84C4EA57963368ED1CDF6D16410CC063E92</idno>
<idno type="ark">ark:/67375/WNG-33N12J19-S</idno>
<idno type="DOI">10.1029/2011JD016198</idno>
<idno type="editorialOffice">2011JD016198</idno>
<idno type="society">D21304</idno>
<idno type="unit">JGRD17368</idno>
<idno type="toTypesetVersion">file:JGRD.JGRD17368.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202d</idno>
<idno type="book-part-DOI">10.1002/jgrd.v116.D21</idno>
<idno type="product">JGRD</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">116</biblScope>
<biblScope unit="issue">D21</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2011-11-16"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrd17368-para-0001">The inversion of CO
<hi rend="subscript">2</hi>
surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO
<hi rend="subscript">2</hi>
concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations
<hi rend="italic">d</hi>
(DFS/
<hi rend="italic">d</hi>
< 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="jgrd17368-para-0002">
<list style="bulleted">
<item>Construction of optimal efficient multiscale grids under the DFS criterion</item>
<item>Aggregation error identified and explicitly formulated for CO2 inversion</item>
<item>Characterize optimal information flow from observations to the whole domain</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrd17368-kwd-0001">aggregation error</term>
<term xml:id="jgrd17368-kwd-0002">degrees of freedom for the signal</term>
<term xml:id="jgrd17368-kwd-0003">mesoscale CO2 inversion</term>
<term xml:id="jgrd17368-kwd-0004">optimal multiscale representation</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ACH">Composition and Chemistry</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3200">MATHEMATICAL GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</classCode>
<keywords rend="articleCategory">
<term>Composition and Chemistry</term>
</keywords>
<keywords rend="tocHeading1">
<term>Composition and Chemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd17368">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="210">
<doi>10.1002/jgrd.v116.D21</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="116">116</numbering>
<numbering type="journalIssue">D21</numbering>
</numberingGroup>
<coverDate startDate="2011-11-16">16 November 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="460" type="article" status="forIssue">
<doi>10.1029/2011JD016198</doi>
<idGroup>
<id type="editorialOffice" value="2011JD016198"></id>
<id type="society" value="D21304"></id>
<id type="unit" value="JGRD17368"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Composition and Chemistry</title>
<title type="tocHeading1">Composition and Chemistry</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-05-03"></event>
<event type="manuscriptRevised" date="2011-08-15"></event>
<event type="manuscriptAccepted" date="2011-08-16"></event>
<event type="firstOnline" date="2011-11-05"></event>
<event type="publishedOnlineFinalForm" date="2011-11-05"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-01-30"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ACH">Composition and Chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0428">Carbon cycling</subject>
<subject href="http://psi.agu.org/taxonomy5/0490">Trace gases</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3200">MATHEMATICAL GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3260">Inverse theory</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3315">Data assimilation</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4806">Carbon cycling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd17368-cit-0000" type="self">
<author>
<familyName>Wu</familyName>
,
<givenNames>L.</givenNames>
</author>
,
<author>
<givenNames>M.</givenNames>
<familyName>Bocquet</familyName>
</author>
,
<author>
<givenNames>T.</givenNames>
<familyName>Lauvaux</familyName>
</author>
,
<author>
<givenNames>F.</givenNames>
<familyName>Chevallier</familyName>
</author>
,
<author>
<givenNames>P.</givenNames>
<familyName>Rayner</familyName>
</author>
, and
<author>
<givenNames>K.</givenNames>
<familyName>Davis</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>116</vol>
, D21304, doi:
<accessionId ref="info:doi/10.1029/2011JD016198">10.1029/2011JD016198</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD17368.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="9200"></count>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
<title type="short">FLUX REPRESENTATION FOR CO
<sub>2</sub>
INVERSION</title>
<title type="shortAuthors">Wu
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd17368-cr-0001" affiliationRef="#jgrd17368-aff-0001 #jgrd17368-aff-0002">
<personName>
<givenNames>Lin</givenNames>
<familyName>Wu</familyName>
</personName>
<contactDetails>
<email normalForm="Lin.Wu@cerea.enpc.fr">Lin.Wu@cerea.enpc.fr</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrd17368-cr-0002" affiliationRef="#jgrd17368-aff-0001 #jgrd17368-aff-0002">
<personName>
<givenNames>Marc</givenNames>
<familyName>Bocquet</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17368-cr-0003" affiliationRef="#jgrd17368-aff-0003">
<personName>
<givenNames>Thomas</givenNames>
<familyName>Lauvaux</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17368-cr-0004" affiliationRef="#jgrd17368-aff-0004">
<personName>
<givenNames>Frédéric</givenNames>
<familyName>Chevallier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17368-cr-0005" affiliationRef="#jgrd17368-aff-0005">
<personName>
<givenNames>Peter</givenNames>
<familyName>Rayner</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd17368-cr-0006" affiliationRef="#jgrd17368-aff-0003">
<personName>
<givenNames>Kenneth</givenNames>
<familyName>Davis</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="jgrd17368-aff-0001">
<orgName>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est</orgName>
<address>
<city>Marne la Vallée</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrd17368-aff-0002">
<orgDiv>INRIA</orgDiv>
<orgName>Paris‐Rocquencourt Research Center</orgName>
<address>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd17368-aff-0003">
<orgDiv>Department of Meteorology</orgDiv>
<orgName>Pennsylvania State University</orgName>
<address>
<city>University Park</city>
<countryPart>Pennsylvania</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrd17368-aff-0004">
<orgDiv>Laboratoire des Sciences du Climat et de l'Environnement</orgDiv>
<orgName>CEA‐CNRS‐UVSQ, IPSL</orgName>
<address>
<city>Gif‐sur‐Yvette</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="jgrd17368-aff-0005">
<orgDiv>School of Earth Sciences</orgDiv>
<orgName>University of Melbourne</orgName>
<address>
<city>Melbourne, Victoria</city>
<country>Australia</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd17368-kwd-0001">aggregation error</keyword>
<keyword xml:id="jgrd17368-kwd-0002">degrees of freedom for the signal</keyword>
<keyword xml:id="jgrd17368-kwd-0003">mesoscale CO2 inversion</keyword>
<keyword xml:id="jgrd17368-kwd-0004">optimal multiscale representation</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd17368:jgrd17368-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd17368-para-0001" label="1">The inversion of CO
<sub>2</sub>
surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO
<sub>2</sub>
concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations
<i>d</i>
(DFS/
<i>d</i>
< 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrd17368-para-0002">
<list style="bulleted">
<listItem>Construction of optimal efficient multiscale grids under the DFS criterion</listItem>
<listItem>Aggregation error identified and explicitly formulated for CO2 inversion</listItem>
<listItem>Characterize optimal information flow from observations to the whole domain</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FLUX REPRESENTATION FOR CO2 INVERSION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Wu</namePart>
<affiliation>E-mail: Lin.Wu@cerea.enpc.fr</affiliation>
<affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</affiliation>
<affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</affiliation>
<affiliation>E-mail: Lin.Wu@cerea.enpc.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Bocquet</namePart>
<affiliation>CEREA, Joint Laboratory École des Ponts ParisTech ‐ EDF R&D, Université Paris‐Est, Marne la Vallée, France</affiliation>
<affiliation>INRIA, Paris‐Rocquencourt Research Center, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Lauvaux</namePart>
<affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Chevallier</namePart>
<affiliation>Laboratoire des Sciences du Climat et de l'Environnement, CEA‐CNRS‐UVSQ, IPSL, Gif‐sur‐Yvette, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Rayner</namePart>
<affiliation>School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Davis</namePart>
<affiliation>Department of Meteorology, Pennsylvania State University, Pennsylvania, University Park, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-11-16</dateIssued>
<dateCaptured encoding="w3cdtf">2011-05-03</dateCaptured>
<dateValid encoding="w3cdtf">2011-08-16</dateValid>
<edition>Wu, L., M. Bocquet, T. Lauvaux, F. Chevallier, P. Rayner, and K. Davis (2011), Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data, J. Geophys. Res., 116, D21304, doi:10.1029/2011JD016198.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="words">9200</extent>
</physicalDescription>
<abstract>The inversion of CO2 surface fluxes from atmospheric concentration measurements involves discretizing the flux domain in time and space. The resolution choice is usually guided by technical considerations despite its impact on the solution to the inversion problem. In our previous studies, a Bayesian formalism has recently been introduced to describe the discretization of the parameter space over a large dictionary of adaptive multiscale grids. In this paper, we exploit this new framework to construct optimal space‐time representations of carbon fluxes for mesoscale inversions. Inversions are performed using synthetic continuous hourly CO2 concentration data in the context of the Ring 2 experiment in support of the North American Carbon Program Mid Continent Intensive (MCI). Compared with the regular grid at finest scale, optimal representations can have similar inversion performance with far fewer grid cells. These optimal representations are obtained by maximizing the number of degrees of freedom for the signal (DFS) that measures the information gain from observations to resolve the unknown fluxes. Consequently information from observations can be better propagated within the domain through these optimal representations. For the Ring 2 network of eight towers, in most cases, the DFS value is relatively small compared to the number of observations d (DFS/d < 20%). In this multiscale setting, scale‐dependent aggregation errors are identified and explicitly formulated for more reliable inversions. It is recommended that the aggregation errors should be taken into account, especially when the correlations in the errors of a priori fluxes are physically unrealistic. The optimal multiscale grids allow to adaptively mitigate the aggregation errors.</abstract>
<abstract type="short">Construction of optimal efficient multiscale grids under the DFS criterion Aggregation error identified and explicitly formulated for CO2 inversion Characterize optimal information flow from observations to the whole domain</abstract>
<note type="additional physical form">Tab‐delimited Table 1.</note>
<subject>
<genre>keywords</genre>
<topic>aggregation error</topic>
<topic>degrees of freedom for the signal</topic>
<topic>mesoscale CO2 inversion</topic>
<topic>optimal multiscale representation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ACH">Composition and Chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0428">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0490">Trace gases</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3200">MATHEMATICAL GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3260">Inverse theory</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3315">Data assimilation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4806">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Composition and Chemistry</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D21</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">679DE84C4EA57963368ED1CDF6D16410CC063E92</identifier>
<identifier type="ark">ark:/67375/WNG-33N12J19-S</identifier>
<identifier type="DOI">10.1029/2011JD016198</identifier>
<identifier type="ArticleID">2011JD016198</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/679DE84C4EA57963368ED1CDF6D16410CC063E92/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001347 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001347 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:679DE84C4EA57963368ED1CDF6D16410CC063E92
   |texte=   Optimal representation of source‐sink fluxes for mesoscale carbon dioxide inversion with synthetic data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024