Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

Identifieur interne : 001229 ( Istex/Corpus ); précédent : 001228; suivant : 001230

Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

Auteurs : Youngryel Ryu ; Dennis D. Baldocchi ; Hideki Kobayashi ; Catharine Van Ingen ; Jie Li ; T. Andy Black ; Jason Beringer ; Eva Van Gorsel ; Alexander Knohl ; Beverly E. Law ; Olivier Roupsard

Source :

RBID : ISTEX:61487300701F4319BF47883021417FAC46229385

English descriptors

Abstract

We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr−1 and 500 ± 104 mm yr−1 (equivalent to 63,000 ± 13,100 km3 yr−1), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.

Url:
DOI: 10.1029/2011GB004053

Links to Exploration step

ISTEX:61487300701F4319BF47883021417FAC46229385

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
<author>
<name sortKey="Ryu, Youngryel" sort="Ryu, Youngryel" uniqKey="Ryu Y" first="Youngryel" last="Ryu">Youngryel Ryu</name>
<affiliation>
<mods:affiliation>E-mail: yryu@snu.ac.kr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: yryu@snu.ac.kr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baldocchi, Dennis D" sort="Baldocchi, Dennis D" uniqKey="Baldocchi D" first="Dennis D." last="Baldocchi">Dennis D. Baldocchi</name>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, Hideki" sort="Kobayashi, Hideki" uniqKey="Kobayashi H" first="Hideki" last="Kobayashi">Hideki Kobayashi</name>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Ingen, Catharine" sort="Van Ingen, Catharine" uniqKey="Van Ingen C" first="Catharine" last="Van Ingen">Catharine Van Ingen</name>
<affiliation>
<mods:affiliation>eScience Group, Microsoft Research, San Francisco, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jie" sort="Li, Jie" uniqKey="Li J" first="Jie" last="Li">Jie Li</name>
<affiliation>
<mods:affiliation>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Black, T Andy" sort="Black, T Andy" uniqKey="Black T" first="T. Andy" last="Black">T. Andy Black</name>
<affiliation>
<mods:affiliation>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beringer, Jason" sort="Beringer, Jason" uniqKey="Beringer J" first="Jason" last="Beringer">Jason Beringer</name>
<affiliation>
<mods:affiliation>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Gorsel, Eva" sort="Van Gorsel, Eva" uniqKey="Van Gorsel E" first="Eva" last="Van Gorsel">Eva Van Gorsel</name>
<affiliation>
<mods:affiliation>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Knohl, Alexander" sort="Knohl, Alexander" uniqKey="Knohl A" first="Alexander" last="Knohl">Alexander Knohl</name>
<affiliation>
<mods:affiliation>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Law, Beverly E" sort="Law, Beverly E" uniqKey="Law B" first="Beverly E." last="Law">Beverly E. Law</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roupsard, Olivier" sort="Roupsard, Olivier" uniqKey="Roupsard O" first="Olivier" last="Roupsard">Olivier Roupsard</name>
<affiliation>
<mods:affiliation>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:61487300701F4319BF47883021417FAC46229385</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2011GB004053</idno>
<idno type="url">https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001229</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001229</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
<author>
<name sortKey="Ryu, Youngryel" sort="Ryu, Youngryel" uniqKey="Ryu Y" first="Youngryel" last="Ryu">Youngryel Ryu</name>
<affiliation>
<mods:affiliation>E-mail: yryu@snu.ac.kr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: yryu@snu.ac.kr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baldocchi, Dennis D" sort="Baldocchi, Dennis D" uniqKey="Baldocchi D" first="Dennis D." last="Baldocchi">Dennis D. Baldocchi</name>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, Hideki" sort="Kobayashi, Hideki" uniqKey="Kobayashi H" first="Hideki" last="Kobayashi">Hideki Kobayashi</name>
<affiliation>
<mods:affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Ingen, Catharine" sort="Van Ingen, Catharine" uniqKey="Van Ingen C" first="Catharine" last="Van Ingen">Catharine Van Ingen</name>
<affiliation>
<mods:affiliation>eScience Group, Microsoft Research, San Francisco, California, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jie" sort="Li, Jie" uniqKey="Li J" first="Jie" last="Li">Jie Li</name>
<affiliation>
<mods:affiliation>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Black, T Andy" sort="Black, T Andy" uniqKey="Black T" first="T. Andy" last="Black">T. Andy Black</name>
<affiliation>
<mods:affiliation>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beringer, Jason" sort="Beringer, Jason" uniqKey="Beringer J" first="Jason" last="Beringer">Jason Beringer</name>
<affiliation>
<mods:affiliation>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Gorsel, Eva" sort="Van Gorsel, Eva" uniqKey="Van Gorsel E" first="Eva" last="Van Gorsel">Eva Van Gorsel</name>
<affiliation>
<mods:affiliation>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Knohl, Alexander" sort="Knohl, Alexander" uniqKey="Knohl A" first="Alexander" last="Knohl">Alexander Knohl</name>
<affiliation>
<mods:affiliation>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Law, Beverly E" sort="Law, Beverly E" uniqKey="Law B" first="Beverly E." last="Law">Beverly E. Law</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roupsard, Olivier" sort="Roupsard, Olivier" uniqKey="Roupsard O" first="Olivier" last="Roupsard">Olivier Roupsard</name>
<affiliation>
<mods:affiliation>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Biogeochemical Cycles</title>
<title level="j" type="alt">GLOBAL BIOGEOCHEMICAL CYCLES</title>
<idno type="ISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<imprint>
<biblScope unit="vol">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2011-12">2011-12</date>
</imprint>
<idno type="ISSN">0886-6236</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actual temperature</term>
<term>Aerosol product</term>
<term>Aerosol type</term>
<term>Agric</term>
<term>Albedo</term>
<term>Algorithm</term>
<term>Appl</term>
<term>Atmospheric radiative transfer</term>
<term>Atmospheric radiative transfer model</term>
<term>Available energy</term>
<term>Azure storage</term>
<term>Baldocchi</term>
<term>Bess</term>
<term>Bess model</term>
<term>Bioclimatic</term>
<term>Bioclimatic zones</term>
<term>Biol</term>
<term>Biophysical model</term>
<term>Boreal</term>
<term>Boreal forests</term>
<term>British columbia</term>
<term>Canopy</term>
<term>Canopy conductance</term>
<term>Canopy depth</term>
<term>Canopy fluxes</term>
<term>Canopy radiative transfer</term>
<term>Canopy radiative transfer model</term>
<term>Canopy reflectance</term>
<term>Clumped canopy</term>
<term>Clumping</term>
<term>Clumping index</term>
<term>Coefficient</term>
<term>Collatz</term>
<term>Conductance</term>
<term>Cool summer</term>
<term>Data gaps</term>
<term>Deciduous</term>
<term>Deciduous forest</term>
<term>Diffuse</term>
<term>Direct beam</term>
<term>Ecol</term>
<term>Ecosystem</term>
<term>Energy fluxes</term>
<term>Environ</term>
<term>Environmental science</term>
<term>Evaporation</term>
<term>Evapotranspiration</term>
<term>Evergreen</term>
<term>Extinction</term>
<term>Extinction coefficient</term>
<term>Farquhar</term>
<term>Flux tower</term>
<term>Flux tower data</term>
<term>Flux towers</term>
<term>Fluxnet</term>
<term>Foliar</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global change biol</term>
<term>Global climate classification</term>
<term>Global estimates</term>
<term>Global land</term>
<term>Global scale</term>
<term>Good agreement</term>
<term>Houborg</term>
<term>Humid</term>
<term>Ieee trans</term>
<term>Incoming longwave radiation</term>
<term>Incoming shortwave radiation</term>
<term>Input data</term>
<term>Input variables</term>
<term>Irradiance</term>
<term>Jung</term>
<term>Kobayashi</term>
<term>Land products</term>
<term>Land surface models</term>
<term>Land surface temperature</term>
<term>Latent heat flux</term>
<term>Leaf</term>
<term>Leaf area index</term>
<term>Leaf photosynthesis</term>
<term>Leuning</term>
<term>Longwave</term>
<term>Longwave radiation</term>
<term>Meteorol</term>
<term>Meteorological variables</term>
<term>Microsoft</term>
<term>Mmol</term>
<term>Modeling</term>
<term>Modis</term>
<term>Modis data</term>
<term>Modis land</term>
<term>Ncep data</term>
<term>Nearest neighborhood method</term>
<term>Nonlinear processes</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic capacity</term>
<term>Physiol</term>
<term>Pixel</term>
<term>Plant cell environ</term>
<term>Point temperature</term>
<term>Previous studies</term>
<term>Primary productivity</term>
<term>Pury</term>
<term>Qnsh</term>
<term>Qnsun</term>
<term>Qpsh</term>
<term>Qpsun</term>
<term>Radiative</term>
<term>Rain forests</term>
<term>Reanalysis</term>
<term>Recent advances</term>
<term>Reflectance</term>
<term>Reichstein</term>
<term>Relative bias</term>
<term>Relative rmse</term>
<term>Remote sens</term>
<term>Rmse</term>
<term>Seasonal pattern</term>
<term>Seasonal variation</term>
<term>Section canopy radiative transfer model</term>
<term>Sens</term>
<term>Sensitivity analysis</term>
<term>Shade leaf</term>
<term>Shortwave</term>
<term>Sinusoidal</term>
<term>Sinusoidal projection</term>
<term>Sinusoidal tiles</term>
<term>Snir</term>
<term>Soil reflectance</term>
<term>Soil surface</term>
<term>Solar irradiance</term>
<term>Solar zenith angle</term>
<term>Spatial resolution</term>
<term>Stomatal</term>
<term>Stomatal conductance</term>
<term>Sunlit</term>
<term>Sunlit leaf</term>
<term>Temperate</term>
<term>Temporal resolution</term>
<term>Thickness modis</term>
<term>Tree physiol</term>
<term>Tropical forests</term>
<term>Upscaling</term>
<term>Vapor pressure</term>
<term>Vapor pressure deficit</term>
<term>Wang</term>
<term>Warm summer</term>
<term>Water balance</term>
<term>Wind speed</term>
<term>Yuan</term>
<term>Zhao</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Actual temperature</term>
<term>Aerosol product</term>
<term>Aerosol type</term>
<term>Agric</term>
<term>Albedo</term>
<term>Algorithm</term>
<term>Appl</term>
<term>Atmospheric radiative transfer</term>
<term>Atmospheric radiative transfer model</term>
<term>Available energy</term>
<term>Azure storage</term>
<term>Baldocchi</term>
<term>Bess</term>
<term>Bess model</term>
<term>Bioclimatic</term>
<term>Bioclimatic zones</term>
<term>Biol</term>
<term>Biophysical model</term>
<term>Boreal</term>
<term>Boreal forests</term>
<term>British columbia</term>
<term>Canopy</term>
<term>Canopy conductance</term>
<term>Canopy depth</term>
<term>Canopy fluxes</term>
<term>Canopy radiative transfer</term>
<term>Canopy radiative transfer model</term>
<term>Canopy reflectance</term>
<term>Clumped canopy</term>
<term>Clumping</term>
<term>Clumping index</term>
<term>Coefficient</term>
<term>Collatz</term>
<term>Conductance</term>
<term>Cool summer</term>
<term>Data gaps</term>
<term>Deciduous</term>
<term>Deciduous forest</term>
<term>Diffuse</term>
<term>Direct beam</term>
<term>Ecol</term>
<term>Ecosystem</term>
<term>Energy fluxes</term>
<term>Environ</term>
<term>Environmental science</term>
<term>Evaporation</term>
<term>Evapotranspiration</term>
<term>Evergreen</term>
<term>Extinction</term>
<term>Extinction coefficient</term>
<term>Farquhar</term>
<term>Flux tower</term>
<term>Flux tower data</term>
<term>Flux towers</term>
<term>Fluxnet</term>
<term>Foliar</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global change biol</term>
<term>Global climate classification</term>
<term>Global estimates</term>
<term>Global land</term>
<term>Global scale</term>
<term>Good agreement</term>
<term>Houborg</term>
<term>Humid</term>
<term>Ieee trans</term>
<term>Incoming longwave radiation</term>
<term>Incoming shortwave radiation</term>
<term>Input data</term>
<term>Input variables</term>
<term>Irradiance</term>
<term>Jung</term>
<term>Kobayashi</term>
<term>Land products</term>
<term>Land surface models</term>
<term>Land surface temperature</term>
<term>Latent heat flux</term>
<term>Leaf</term>
<term>Leaf area index</term>
<term>Leaf photosynthesis</term>
<term>Leuning</term>
<term>Longwave</term>
<term>Longwave radiation</term>
<term>Meteorol</term>
<term>Meteorological variables</term>
<term>Microsoft</term>
<term>Mmol</term>
<term>Modeling</term>
<term>Modis</term>
<term>Modis data</term>
<term>Modis land</term>
<term>Ncep data</term>
<term>Nearest neighborhood method</term>
<term>Nonlinear processes</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic capacity</term>
<term>Physiol</term>
<term>Pixel</term>
<term>Plant cell environ</term>
<term>Point temperature</term>
<term>Previous studies</term>
<term>Primary productivity</term>
<term>Pury</term>
<term>Qnsh</term>
<term>Qnsun</term>
<term>Qpsh</term>
<term>Qpsun</term>
<term>Radiative</term>
<term>Rain forests</term>
<term>Reanalysis</term>
<term>Recent advances</term>
<term>Reflectance</term>
<term>Reichstein</term>
<term>Relative bias</term>
<term>Relative rmse</term>
<term>Remote sens</term>
<term>Rmse</term>
<term>Seasonal pattern</term>
<term>Seasonal variation</term>
<term>Section canopy radiative transfer model</term>
<term>Sens</term>
<term>Sensitivity analysis</term>
<term>Shade leaf</term>
<term>Shortwave</term>
<term>Sinusoidal</term>
<term>Sinusoidal projection</term>
<term>Sinusoidal tiles</term>
<term>Snir</term>
<term>Soil reflectance</term>
<term>Soil surface</term>
<term>Solar irradiance</term>
<term>Solar zenith angle</term>
<term>Spatial resolution</term>
<term>Stomatal</term>
<term>Stomatal conductance</term>
<term>Sunlit</term>
<term>Sunlit leaf</term>
<term>Temperate</term>
<term>Temporal resolution</term>
<term>Thickness modis</term>
<term>Tree physiol</term>
<term>Tropical forests</term>
<term>Upscaling</term>
<term>Vapor pressure</term>
<term>Vapor pressure deficit</term>
<term>Wang</term>
<term>Warm summer</term>
<term>Water balance</term>
<term>Wind speed</term>
<term>Yuan</term>
<term>Zhao</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr−1 and 500 ± 104 mm yr−1 (equivalent to 63,000 ± 13,100 km3 yr−1), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>modis</json:string>
<json:string>baldocchi</json:string>
<json:string>sunlit</json:string>
<json:string>radiative</json:string>
<json:string>photosynthesis</json:string>
<json:string>canopy</json:string>
<json:string>conductance</json:string>
<json:string>evapotranspiration</json:string>
<json:string>meteorol</json:string>
<json:string>environ</json:string>
<json:string>farquhar</json:string>
<json:string>agric</json:string>
<json:string>remote sens</json:string>
<json:string>albedo</json:string>
<json:string>ecosystem</json:string>
<json:string>clumping</json:string>
<json:string>irradiance</json:string>
<json:string>geophys</json:string>
<json:string>pury</json:string>
<json:string>jung</json:string>
<json:string>rmse</json:string>
<json:string>sunlit leaf</json:string>
<json:string>global</json:string>
<json:string>longwave</json:string>
<json:string>boreal</json:string>
<json:string>solar irradiance</json:string>
<json:string>pixel</json:string>
<json:string>leaf area index</json:string>
<json:string>reanalysis</json:string>
<json:string>bess</json:string>
<json:string>canopy conductance</json:string>
<json:string>mmol</json:string>
<json:string>extinction coefficient</json:string>
<json:string>sensitivity analysis</json:string>
<json:string>sens</json:string>
<json:string>data gaps</json:string>
<json:string>solar zenith angle</json:string>
<json:string>shade leaf</json:string>
<json:string>flux towers</json:string>
<json:string>zhao</json:string>
<json:string>wang</json:string>
<json:string>plant cell environ</json:string>
<json:string>leuning</json:string>
<json:string>photosynthetic</json:string>
<json:string>flux tower data</json:string>
<json:string>collatz</json:string>
<json:string>shortwave</json:string>
<json:string>global land</json:string>
<json:string>microsoft</json:string>
<json:string>biol</json:string>
<json:string>qnsun</json:string>
<json:string>deciduous</json:string>
<json:string>qpsun</json:string>
<json:string>canopy depth</json:string>
<json:string>upscaling</json:string>
<json:string>fluxnet</json:string>
<json:string>vapor pressure deficit</json:string>
<json:string>stomatal</json:string>
<json:string>qnsh</json:string>
<json:string>global climate classification</json:string>
<json:string>energy fluxes</json:string>
<json:string>qpsh</json:string>
<json:string>physiol</json:string>
<json:string>appl</json:string>
<json:string>snir</json:string>
<json:string>warm summer</json:string>
<json:string>ecol</json:string>
<json:string>bioclimatic</json:string>
<json:string>yuan</json:string>
<json:string>houborg</json:string>
<json:string>foliar</json:string>
<json:string>reichstein</json:string>
<json:string>global change biol</json:string>
<json:string>reflectance</json:string>
<json:string>longwave radiation</json:string>
<json:string>available energy</json:string>
<json:string>bioclimatic zones</json:string>
<json:string>seasonal pattern</json:string>
<json:string>primary productivity</json:string>
<json:string>sinusoidal projection</json:string>
<json:string>tree physiol</json:string>
<json:string>modeling</json:string>
<json:string>modis data</json:string>
<json:string>atmospheric radiative transfer model</json:string>
<json:string>stomatal conductance</json:string>
<json:string>clumping index</json:string>
<json:string>modis land</json:string>
<json:string>canopy fluxes</json:string>
<json:string>seasonal variation</json:string>
<json:string>relative bias</json:string>
<json:string>section canopy radiative transfer model</json:string>
<json:string>relative rmse</json:string>
<json:string>land surface temperature</json:string>
<json:string>water balance</json:string>
<json:string>canopy radiative transfer</json:string>
<json:string>global scale</json:string>
<json:string>temperate</json:string>
<json:string>cool summer</json:string>
<json:string>tropical forests</json:string>
<json:string>environmental science</json:string>
<json:string>flux tower</json:string>
<json:string>direct beam</json:string>
<json:string>global biogeochem</json:string>
<json:string>atmospheric radiative transfer</json:string>
<json:string>vapor pressure</json:string>
<json:string>nearest neighborhood method</json:string>
<json:string>biophysical model</json:string>
<json:string>leaf</json:string>
<json:string>coefficient</json:string>
<json:string>evergreen</json:string>
<json:string>algorithm</json:string>
<json:string>humid</json:string>
<json:string>kobayashi</json:string>
<json:string>evaporation</json:string>
<json:string>wind speed</json:string>
<json:string>nonlinear processes</json:string>
<json:string>soil surface</json:string>
<json:string>soil reflectance</json:string>
<json:string>canopy reflectance</json:string>
<json:string>deciduous forest</json:string>
<json:string>recent advances</json:string>
<json:string>leaf photosynthesis</json:string>
<json:string>bess model</json:string>
<json:string>latent heat flux</json:string>
<json:string>temporal resolution</json:string>
<json:string>land products</json:string>
<json:string>aerosol product</json:string>
<json:string>point temperature</json:string>
<json:string>good agreement</json:string>
<json:string>incoming longwave radiation</json:string>
<json:string>meteorological variables</json:string>
<json:string>input variables</json:string>
<json:string>rain forests</json:string>
<json:string>global estimates</json:string>
<json:string>photosynthetic capacity</json:string>
<json:string>thickness modis</json:string>
<json:string>actual temperature</json:string>
<json:string>previous studies</json:string>
<json:string>aerosol type</json:string>
<json:string>input data</json:string>
<json:string>land surface models</json:string>
<json:string>spatial resolution</json:string>
<json:string>british columbia</json:string>
<json:string>incoming shortwave radiation</json:string>
<json:string>azure storage</json:string>
<json:string>boreal forests</json:string>
<json:string>clumped canopy</json:string>
<json:string>sinusoidal tiles</json:string>
<json:string>ieee trans</json:string>
<json:string>ncep data</json:string>
<json:string>canopy radiative transfer model</json:string>
<json:string>diffuse</json:string>
<json:string>sinusoidal</json:string>
<json:string>extinction</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Youngryel Ryu</name>
<affiliations>
<json:string>E-mail: yryu@snu.ac.kr</json:string>
<json:string>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</json:string>
<json:string>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea</json:string>
<json:string>E-mail: yryu@snu.ac.kr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dennis D. Baldocchi</name>
<affiliations>
<json:string>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hideki Kobayashi</name>
<affiliations>
<json:string>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Catharine van Ingen</name>
<affiliations>
<json:string>eScience Group, Microsoft Research, San Francisco, California, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jie Li</name>
<affiliations>
<json:string>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. Andy Black</name>
<affiliations>
<json:string>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jason Beringer</name>
<affiliations>
<json:string>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eva van Gorsel</name>
<affiliations>
<json:string>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alexander Knohl</name>
<affiliations>
<json:string>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Beverly E. Law</name>
<affiliations>
<json:string>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Olivier Roupsard</name>
<affiliations>
<json:string>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France</json:string>
<json:string>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FLUXNET</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>evapotranspiration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gross primary productivity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>upscaling</value>
</json:item>
</subject>
<articleId>
<json:string>2011GB004053</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-SCJ8PZQK-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr−1 and 500 ± 104 mm yr−1 (equivalent to 63,000 ± 13,100 km3 yr−1), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>15520</pdfWordCount>
<pdfCharCount>96474</pdfCharCount>
<pdfVersion>1.6</pdfVersion>
<pdfPageCount>24</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>297</abstractWordCount>
<abstractCharCount>2009</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Global Biogeochemical Cycles</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1944-9224</json:string>
</doi>
<issn>
<json:string>0886-6236</json:string>
</issn>
<eissn>
<json:string>1944-9224</json:string>
</eissn>
<publisherId>
<json:string>GBC</json:string>
</publisherId>
<volume>25</volume>
<issue>4</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>24</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>Remote sensing</value>
</json:item>
<json:item>
<value>Water/energy interactions</value>
</json:item>
<json:item>
<value>Biogeochemical kinetics and reaction modeling</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Biogeochemistry</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Water/energy interactions</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>2002</json:string>
<json:string>1800s</json:string>
</date>
<geogName>
<json:string>River Crane Site Metolius</json:string>
<json:string>Brazil</json:string>
</geogName>
<orgName>
<json:string>Tomakomai National Forest Groundhog River-Mat</json:string>
<json:string>Oak Ridge National Laboratory, University of California, Berkeley, and University of Virginia</json:string>
<json:string>Lawrence Berkeley National Laboratory, Microsoft Research</json:string>
<json:string>Atmospheric Research, Canberra, ACT, Australia</json:string>
<json:string>Department of Energy, Biological and Environmental Research</json:string>
<json:string>Greenland, Arctic and Antarctic regions</json:string>
<json:string>Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</json:string>
<json:string>Department of Landscape Architecture and Rural Systems Engineering</json:string>
<json:string>Microsoft Research, San Francisco, California, USA</json:string>
<json:string>Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</json:string>
<json:string>Ministry of Education, Science and Technology</json:string>
<json:string>Oregon State University</json:string>
<json:string>Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment</json:string>
<json:string>Land and Food Systems</json:string>
<json:string>Congo, and Indonesia</json:string>
<json:string>Department of Forest Ecosystems and Society</json:string>
<json:string>University of British Columbia</json:string>
<json:string>NRF</json:string>
<json:string>Department of Environmental Science, Policy and Management</json:string>
<json:string>Department of Energy</json:string>
<json:string>Boston University</json:string>
<json:string>Seoul National University, Seoul, South Korea</json:string>
<json:string>University of California</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Office of Science</json:string>
<json:string>National Research Foundation of Korea</json:string>
<json:string>Spain, Australia and Central Asia</json:string>
<json:string>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</json:string>
<json:string>BER</json:string>
<json:string>Berkeley Water Center</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Beverly E. Law</json:string>
<json:string>D. de Pury</json:string>
<json:string>Jack Pine</json:string>
<json:string>Olivier Roupsard</json:string>
<json:string>G. Farquhar</json:string>
<json:string>Keith Jackson</json:string>
<json:string>Howard Springs</json:string>
<json:string>Jan Pisek</json:string>
<json:string>Faculty</json:string>
<json:string>Christian Beer</json:string>
<json:string>Alexander Knohl</json:string>
<json:string>Catharine van Ingen</json:string>
<json:string>Eva van Gorsel</json:string>
<json:string>BESS Rs</json:string>
<json:string>Rodrigo Vargas</json:string>
<json:string>Jason Beringer</json:string>
<json:string>Ji Parana</json:string>
<json:string>Now</json:string>
<json:string>Goudriaan</json:string>
<json:string>Gil Bohrer</json:string>
<json:string>Andy Black</json:string>
<json:string>To</json:string>
<json:string>Marty Humphrey</json:string>
<json:string>Deb Agarwal</json:string>
<json:string>Andrej Varlagin</json:string>
<json:string>Jie Li</json:string>
<json:string>Martin Jung</json:string>
<json:string>Larry Flanagan</json:string>
<json:string>BESS Description</json:string>
<json:string>Russ Scott</json:string>
<json:string>A. Varlagin</json:string>
<json:string>Shade Leaves</json:string>
</persName>
<placeName>
<json:string>Montpellier</json:string>
<json:string>Columbia</json:string>
<json:string>Korea</json:string>
<json:string>Brazil</json:string>
<json:string>Canada</json:string>
<json:string>Costa Rica</json:string>
<json:string>Santa Rita</json:string>
<json:string>Vancouver</json:string>
<json:string>Jordan</json:string>
<json:string>France</json:string>
</placeName>
<ref_url>
<json:string>http://earthengine.googlelabs.com</json:string>
<json:string>http://www-modis.bu.edu/</json:string>
</ref_url>
<ref_bibl>
<json:string>Baldocchi et al., 2000</json:string>
<json:string>Cleugh et al., 2007</json:string>
<json:string>Kattge et al., 2009</json:string>
<json:string>[67]</json:string>
<json:string>Baldocchi et al., 2005</json:string>
<json:string>Chen et al., 1999</json:string>
<json:string>[1997]</json:string>
<json:string>Hess et al., 1998</json:string>
<json:string>Hua et al., 2007</json:string>
<json:string>Hess et al. [1998]</json:string>
<json:string>Baldocchi et al., 1997</json:string>
<json:string>Van Laake and Sanchez-Azofeifa, 2004</json:string>
<json:string>Houborg et al.</json:string>
<json:string>Lettenmaier and Famiglietti, 2006</json:string>
<json:string>Ryu et al., 2012</json:string>
<json:string>Collatz et al., 1992</json:string>
<json:string>Kalnay et al., 1996</json:string>
<json:string>Sinclair et al., 1976</json:string>
<json:string>Houborg et al., 2007</json:string>
<json:string>Beer et al. [2010]</json:string>
<json:string>[66]</json:string>
<json:string>Baldocchi et al., 2002, 1985</json:string>
<json:string>Fang et al., 2008, 2007</json:string>
<json:string>Harley and Baldocchi, 1995</json:string>
<json:string>Still et al., 2003</json:string>
<json:string>Xu and Baldocchi, 2004</json:string>
<json:string>Ryu et al., 2010c</json:string>
<json:string>Wentz et al., 2007</json:string>
<json:string>Schulze et al., 1994</json:string>
<json:string>Harley et al., 1992</json:string>
<json:string>Mueller et al., 2011</json:string>
<json:string>Dai et al., 2004</json:string>
<json:string>[39]</json:string>
<json:string>Miralles et al., 2010</json:string>
<json:string>Ollinger et al., 2008</json:string>
<json:string>July, 2003</json:string>
<json:string>Farquhar et al., 1980</json:string>
<json:string>[1996]</json:string>
<json:string>Knorr and Heimann, 2001</json:string>
<json:string>Wang and Leuning, 1998</json:string>
<json:string>Hanan et al., 2005</json:string>
<json:string>Li et al. [2010]</json:string>
<json:string>Gu et al., 2002</json:string>
<json:string>Reichstein et al., 2005</json:string>
<json:string>Hasler and Avissar, 2007</json:string>
<json:string>[65]</json:string>
<json:string>Law et al., 2001</json:string>
<json:string>Scott et al., 2010</json:string>
<json:string>Running et al., 2004</json:string>
<json:string>Collatz et al., 1991</json:string>
<json:string>Chen et al., 2005</json:string>
<json:string>July 2003</json:string>
<json:string>Choudhury et al., 1987</json:string>
<json:string>Ryu et al., 2008b</json:string>
<json:string>[49]</json:string>
<json:string>Osmond et al., 1980</json:string>
<json:string>Strahler et al., 2008</json:string>
<json:string>Xu and Baldocchi, 2003</json:string>
<json:string>Yuan et al., 2010</json:string>
<json:string>Fisher et al. [2008]</json:string>
<json:string>Kottek et al., 2006</json:string>
<json:string>Wilson et al., 2001</json:string>
<json:string>Sims et al., 2008</json:string>
<json:string>Zhao et al. [2006]</json:string>
<json:string>McCabe et al., 2008</json:string>
<json:string>Baldocchi et al., 1984</json:string>
<json:string>Muraoka et al., 2010</json:string>
<json:string>Wright et al., 2004</json:string>
<json:string>Fisher et al., 2008</json:string>
<json:string>Zhao et al., 2006</json:string>
<json:string>Leuning et al., 2005</json:string>
<json:string>[64]</json:string>
<json:string>Agarwal et al., 2011</json:string>
<json:string>Kanniah et al., 2010</json:string>
<json:string>Hilker et al., 2009</json:string>
<json:string>Key and Schweiger, 1998</json:string>
<json:string>Baldocchi and Wilson, 2001</json:string>
<json:string>[48]</json:string>
<json:string>Alton et al., 2007</json:string>
<json:string>Liu and Jordan, 1960</json:string>
<json:string>Fang et al., 2007</json:string>
<json:string>Heinsch et al., 2006</json:string>
<json:string>Ryu et al., 2008a</json:string>
<json:string>Wolfe et al., 1998</json:string>
<json:string>Ribeiro et al., 2007</json:string>
<json:string>Beer et al., 2010</json:string>
<json:string>[1988]</json:string>
<json:string>Wilson et al., 2000</json:string>
<json:string>Hikosaka et al., 2007</json:string>
<json:string>Mu et al., 2007</json:string>
<json:string>[63]</json:string>
<json:string>Zhao et al., 2005</json:string>
<json:string>van der Werf et al., 2009</json:string>
<json:string>Li et al., 2010</json:string>
<json:string>Ciais et al., 2005</json:string>
<json:string>Lee and Mahrt, 2004</json:string>
<json:string>Reichstein et al., 2003</json:string>
<json:string>Jung et al. [2010]</json:string>
<json:string>[58]</json:string>
<json:string>Pisek et al., 2010</json:string>
<json:string>Liang et al., 2006</json:string>
<json:string>Oki and Kanae, 2006</json:string>
<json:string>Reich et al., 1997</json:string>
<json:string>Norman and Jarvis, 1975</json:string>
<json:string>Lemeur and Blad, 1974</json:string>
<json:string>Ruimy et al., 1996</json:string>
<json:string>Priestley and Taylor, 1972</json:string>
<json:string>Rambal et al., 2003</json:string>
<json:string>Wright et al. [2004]</json:string>
<json:string>Zhang et al., 2010</json:string>
<json:string>Houborg et al., 2009</json:string>
<json:string>[40]</json:string>
<json:string>Asner et al., 2005</json:string>
<json:string>Beer et al. (2010)</json:string>
<json:string>Xiao et al., 2010</json:string>
<json:string>Hill et al., 2006</json:string>
<json:string>Hirano et al., 2007</json:string>
<json:string>Norman et al., 1995</json:string>
<json:string>[2]</json:string>
<json:string>Hollinger et al., 2010</json:string>
<json:string>Martin et al., 2010</json:string>
<json:string>[57]</json:string>
<json:string>Paw and Gao, 1988</json:string>
<json:string>Demarty et al., 2007</json:string>
<json:string>Kattge and Knorr, 2007</json:string>
<json:string>Kosugi et al., 2003</json:string>
<json:string>Vermote et al., 1997</json:string>
<json:string>Wang et al., 2007</json:string>
<json:string>Baldocchi and Meyers, 1998</json:string>
<json:string>Norman and Jarvis, 1974</json:string>
<json:string>de Pury and Farquhar, 1997</json:string>
<json:string>Leuning et al., 1995</json:string>
<json:string>Giorgi and Avissar, 1997</json:string>
<json:string>[1960]</json:string>
<json:string>Rodell et al., 2004</json:string>
<json:string>Huete et al., 2008</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-SCJ8PZQK-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - meteorology & atmospheric sciences</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
<json:string>2 - environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - General Environmental Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Environmental Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Global and Planetary Change</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2011GB004053</json:string>
</doi>
<id>61487300701F4319BF47883021417FAC46229385</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2011 by the American Geophysical Union</licence>
</availability>
<date type="published" when="2011-12"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
<title level="a" type="short">GLOBAL GPP AND ET</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Youngryel</forename>
<surname>Ryu</surname>
</persName>
<email>yryu@snu.ac.kr</email>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Dennis D.</forename>
<surname>Baldocchi</surname>
</persName>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Hideki</forename>
<surname>Kobayashi</surname>
</persName>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Catharine</forename>
<surname>Ingen</surname>
</persName>
<affiliation>eScience Group, Microsoft Research, San Francisco, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Jie</forename>
<surname>Li</surname>
</persName>
<affiliation>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">T. Andy</forename>
<surname>Black</surname>
</persName>
<affiliation>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Jason</forename>
<surname>Beringer</surname>
</persName>
<affiliation>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">Eva</forename>
<surname>Gorsel</surname>
</persName>
<affiliation>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<forename type="first">Alexander</forename>
<surname>Knohl</surname>
</persName>
<affiliation>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0009">
<persName>
<forename type="first">Beverly E.</forename>
<surname>Law</surname>
</persName>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0010">
<persName>
<forename type="first">Olivier</forename>
<surname>Roupsard</surname>
</persName>
<affiliation>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
<address>
<country key="CR"></country>
</address>
</affiliation>
</author>
<idno type="istex">61487300701F4319BF47883021417FAC46229385</idno>
<idno type="ark">ark:/67375/WNG-SCJ8PZQK-5</idno>
<idno type="DOI">10.1029/2011GB004053</idno>
<idno type="editorialOffice">2011GB004053</idno>
<idno type="society">GB4017</idno>
<idno type="unit">GBC1823</idno>
<idno type="toTypesetVersion">file:GBC.GBC1823.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Global Biogeochemical Cycles</title>
<title level="j" type="alt">GLOBAL BIOGEOCHEMICAL CYCLES</title>
<idno type="pISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<idno type="book-DOI">10.1002/(ISSN)1944-9224</idno>
<idno type="book-part-DOI">10.1002/gbc.v25.4</idno>
<idno type="product">GBC</idno>
<idno type="coden">GBCYEP</idno>
<imprint>
<biblScope unit="vol">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2011-12"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="gbc1823-para-0004">We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r
<hi rend="superscript">2</hi>
= 0.95, relative bias: 8%), gross primary productivity (r
<hi rend="superscript">2</hi>
= 0.86, relative bias: 5%) and evapotranspiration (r
<hi rend="superscript">2</hi>
= 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr
<hi rend="superscript">−1</hi>
and 500 ± 104 mm yr
<hi rend="superscript">−1</hi>
(equivalent to 63,000 ± 13,100 km
<hi rend="superscript">3</hi>
yr
<hi rend="superscript">−1</hi>
), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="gbc1823-para-0005">
<list style="bulleted">
<item>A process model that couples atmosphere and canopy processes is reported</item>
<item>The model shows a good performance across a range of spatial and temporal scales</item>
<item>Mean annual global land GPP and ET are 118 PgC yr‐1 and 63000 km3, respectively</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="gbc1823-kwd-0001">FLUXNET</term>
<term xml:id="gbc1823-kwd-0002">evapotranspiration</term>
<term xml:id="gbc1823-kwd-0003">gross primary productivity</term>
<term xml:id="gbc1823-kwd-0004">upscaling</term>
</keywords>
<classCode scheme="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</classCode>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="gbc1823">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-9224</doi>
<issn type="print">0886-6236</issn>
<issn type="electronic">1944-9224</issn>
<idGroup>
<id type="product" value="GBC"></id>
<id type="coden" value="GBCYEP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GLOBAL BIOGEOCHEMICAL CYCLES">Global Biogeochemical Cycles</title>
<title type="short">Global Biogeochem. Cycles</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/gbc.v25.4</doi>
<numberingGroup>
<numbering type="journalVolume" number="25">25</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2011-12">December 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="10" status="forIssue">
<doi>10.1029/2011GB004053</doi>
<idGroup>
<id type="editorialOffice" value="2011GB004053"></id>
<id type="society" value="GB4017"></id>
<id type="unit" value="GBC1823"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-02-11"></event>
<event type="manuscriptRevised" date="2011-09-03"></event>
<event type="manuscriptAccepted" date="2011-10-23"></event>
<event type="firstOnline" date="2011-12-30"></event>
<event type="publishedOnlineFinalForm" date="2011-12-30"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-12"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</subject>
<subject href="http://psi.agu.org/taxonomy5/0428">Carbon cycling</subject>
<subject href="http://psi.agu.org/taxonomy5/0480">Remote sensing</subject>
<subject href="http://psi.agu.org/taxonomy5/0495">Water/energy interactions</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1878">Water/energy interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4806">Carbon cycling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="gbc1823-cit-0000" type="self">
<author>
<familyName>Ryu</familyName>
,
<givenNames>Y.</givenNames>
</author>
, et al. (
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</articleTitle>
,
<journalTitle>Global Biogeochem. Cycles</journalTitle>
,
<vol>25</vol>
, GB4017, doi:
<accessionId ref="info:doi/10.1029/2011GB004053">10.1029/2011GB004053</accessionId>
.</citation>
</selfCitationGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GBC.GBC1823.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="16800"></count>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
<title type="shortAuthors">RYU ET AL.</title>
<title type="short">GLOBAL GPP AND ET</title>
</titleGroup>
<creators>
<creator xml:id="gbc1823-cr-0001" creatorRole="author" affiliationRef="#gbc1823-aff-0001 #gbc1823-aff-0002">
<personName>
<givenNames>Youngryel</givenNames>
<familyName>Ryu</familyName>
</personName>
<contactDetails>
<email>yryu@snu.ac.kr</email>
</contactDetails>
</creator>
<creator xml:id="gbc1823-cr-0002" creatorRole="author" affiliationRef="#gbc1823-aff-0001">
<personName>
<givenNames>Dennis D.</givenNames>
<familyName>Baldocchi</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0003" creatorRole="author" affiliationRef="#gbc1823-aff-0001">
<personName>
<givenNames>Hideki</givenNames>
<familyName>Kobayashi</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0004" creatorRole="author" affiliationRef="#gbc1823-aff-0003">
<personName>
<givenNames>Catharine</givenNames>
<familyNamePrefix>van</familyNamePrefix>
<familyName>Ingen</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0005" creatorRole="author" affiliationRef="#gbc1823-aff-0004">
<personName>
<givenNames>Jie</givenNames>
<familyName>Li</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0006" creatorRole="author" affiliationRef="#gbc1823-aff-0005">
<personName>
<givenNames>T. Andy</givenNames>
<familyName>Black</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0007" creatorRole="author" affiliationRef="#gbc1823-aff-0006">
<personName>
<givenNames>Jason</givenNames>
<familyName>Beringer</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0008" creatorRole="author" affiliationRef="#gbc1823-aff-0007">
<personName>
<givenNames>Eva</givenNames>
<familyNamePrefix>van</familyNamePrefix>
<familyName>Gorsel</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0009" creatorRole="author" affiliationRef="#gbc1823-aff-0008">
<personName>
<givenNames>Alexander</givenNames>
<familyName>Knohl</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0010" creatorRole="author" affiliationRef="#gbc1823-aff-0009">
<personName>
<givenNames>Beverly E.</givenNames>
<familyName>Law</familyName>
</personName>
</creator>
<creator xml:id="gbc1823-cr-0011" creatorRole="author" affiliationRef="#gbc1823-aff-0010 #gbc1823-aff-0011">
<personName>
<givenNames>Olivier</givenNames>
<familyName>Roupsard</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="gbc1823-aff-0001" countryCode="US" type="organization">
<unparsedAffiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0002" countryCode="KR" type="organization">
<unparsedAffiliation>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0003" countryCode="US" type="organization">
<unparsedAffiliation>eScience Group, Microsoft Research, San Francisco, California, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0004" countryCode="US" type="organization">
<unparsedAffiliation>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0005" countryCode="CA" type="organization">
<unparsedAffiliation>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0006" countryCode="AU" type="organization">
<unparsedAffiliation>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0007" countryCode="AU" type="organization">
<unparsedAffiliation>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0008" countryCode="DE" type="organization">
<unparsedAffiliation>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0009" countryCode="US" type="organization">
<unparsedAffiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0010" countryCode="FR" type="organization">
<unparsedAffiliation>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="gbc1823-aff-0011" countryCode="CR" type="organization">
<unparsedAffiliation>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="gbc1823-kwd-0001">FLUXNET</keyword>
<keyword xml:id="gbc1823-kwd-0002">evapotranspiration</keyword>
<keyword xml:id="gbc1823-kwd-0003">gross primary productivity</keyword>
<keyword xml:id="gbc1823-kwd-0004">upscaling</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NASA, DOE</fundingAgency>
<fundingNumber>NNX08AU25H</fundingNumber>
<fundingNumber>DE‐FG02‐06ER64308</fundingNumber>
<fundingNumber>DE‐FG02‐04ER63917</fundingNumber>
<fundingNumber>DE‐FG02‐04ER63911</fundingNumber>
</fundingInfo>
<supportingInformation xml:id="gbc1823-sup-0000">
<p xml:id="gbc1823-para-0001">Auxiliary material for this article contains three tables showing parameters used in BESS model and site information used for testing BESS model.</p>
<p xml:id="gbc1823-para-0002">Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac).</p>
<p xml:id="gbc1823-para-0003">Additional file information is provided in the readme.txt.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0001-readme"></mediaResource>
<caption>readme.txt</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="gbc1823-sup-0001">
<mediaResource alt="supplementary data" mimeType="application/msword" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0002-ts01"></mediaResource>
<caption>Table S1. List of spectral parameters and canopy height for each plant functional type.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="gbc1823-sup-0002">
<mediaResource alt="supplementary data" mimeType="application/msword" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0003-ts02"></mediaResource>
<caption>Table S2. Look up table of maximum carboxylation rate at 25C and nitrogen use efficiency.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="gbc1823-sup-0003">
<mediaResource alt="supplementary data" mimeType="application/msword" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0003-ts02"></mediaResource>
<caption>Table S3. Flux tower site information.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0005-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0006-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1823:gbc1823-sup-0007-taA01"></mediaResource>
<caption>Tab‐delimited Table A1.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="gbc1823-para-0004" label="1">We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r
<sup>2</sup>
= 0.95, relative bias: 8%), gross primary productivity (r
<sup>2</sup>
= 0.86, relative bias: 5%) and evapotranspiration (r
<sup>2</sup>
= 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr
<sup>−1</sup>
and 500 ± 104 mm yr
<sup>−1</sup>
(equivalent to 63,000 ± 13,100 km
<sup>3</sup>
yr
<sup>−1</sup>
), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="gbc1823-para-0005">
<list style="bulleted">
<listItem>A process model that couples atmosphere and canopy processes is reported</listItem>
<listItem>The model shows a good performance across a range of spatial and temporal scales</listItem>
<listItem>Mean annual global land GPP and ET are 118 PgC yr‐1 and 63000 km3, respectively</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GLOBAL GPP AND ET</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youngryel</namePart>
<namePart type="family">Ryu</namePart>
<affiliation>E-mail: yryu@snu.ac.kr</affiliation>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</affiliation>
<affiliation>Now at Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea</affiliation>
<affiliation>E-mail: yryu@snu.ac.kr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis D.</namePart>
<namePart type="family">Baldocchi</namePart>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideki</namePart>
<namePart type="family">Kobayashi</namePart>
<affiliation>Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catharine</namePart>
<namePart type="family">van Ingen</namePart>
<affiliation>eScience Group, Microsoft Research, San Francisco, California, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Li</namePart>
<affiliation>Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. Andy</namePart>
<namePart type="family">Black</namePart>
<affiliation>Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Beringer</namePart>
<affiliation>School of Geography and Environmental Science, Monash University, Melbourne, Victoria, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">van Gorsel</namePart>
<affiliation>CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Knohl</namePart>
<affiliation>Chair of Bioclimatology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beverly E.</namePart>
<namePart type="family">Law</namePart>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Roupsard</namePart>
<affiliation>CIRAD, UMR Ecologie Fonctionnelle and Biogéochimie des Sols and Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France</affiliation>
<affiliation>Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-12</dateIssued>
<dateCaptured encoding="w3cdtf">2011-02-11</dateCaptured>
<dateValid encoding="w3cdtf">2011-10-23</dateValid>
<edition>Ryu, Y., et al. (2011), Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales, Global Biogeochem. Cycles, 25, GB4017, doi:10.1029/2011GB004053.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">11</extent>
<extent unit="tables">3</extent>
<extent unit="words">16800</extent>
</physicalDescription>
<abstract>We propose the Breathing Earth System Simulator (BESS), an upscaling approach to quantify global gross primary productivity and evapotranspiration using MODIS with a spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land products on the same projection and spatial resolution over the global land. This enabled us to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy radiative transfer processes, with models that computed leaf photosynthesis, stomatal conductance and transpiration on the sunlit and shaded portions of the vegetation and soil. At the annual time step, the mass and energy fluxes derived from BESS showed strong linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 ± 26 PgC yr−1 and 500 ± 104 mm yr−1 (equivalent to 63,000 ± 13,100 km3 yr−1), respectively. BESS‐derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine‐learning, data‐driven products, but the process‐oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process‐based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8‐day interval over multiple years.</abstract>
<abstract type="short">A process model that couples atmosphere and canopy processes is reported The model shows a good performance across a range of spatial and temporal scales Mean annual global land GPP and ET are 118 PgC yr‐1 and 63000 km3, respectively</abstract>
<note type="funding">NASA, DOE - No. NNX08AU25H; No. DE‐FG02‐06ER64308; No. DE‐FG02‐04ER63917; No. DE‐FG02‐04ER63911; </note>
<subject>
<genre>keywords</genre>
<topic>FLUXNET</topic>
<topic>evapotranspiration</topic>
<topic>gross primary productivity</topic>
<topic>upscaling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Biogeochemical Cycles</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Global Biogeochem. Cycles</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Auxiliary material for this article contains three tables showing parameters used in BESS model and site information used for testing BESS model. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains three tables showing parameters used in BESS model and site information used for testing BESS model. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains three tables showing parameters used in BESS model and site information used for testing BESS model. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt.Supporting Info Item: readme.txt - Table S1. List of spectral parameters and canopy height for each plant functional type. - Table S2. Look up table of maximum carboxylation rate at 25C and nitrogen use efficiency. - Table S3. Flux tower site information. - Tab‐delimited Table 1. - Tab‐delimited Table 2. - Tab‐delimited Table A1. - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0428">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0480">Remote sensing</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0495">Water/energy interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1878">Water/energy interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4806">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</topic>
</subject>
<identifier type="ISSN">0886-6236</identifier>
<identifier type="eISSN">1944-9224</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-9224</identifier>
<identifier type="CODEN">GBCYEP</identifier>
<identifier type="PublisherID">GBC</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">61487300701F4319BF47883021417FAC46229385</identifier>
<identifier type="ark">ark:/67375/WNG-SCJ8PZQK-5</identifier>
<identifier type="DOI">10.1029/2011GB004053</identifier>
<identifier type="ArticleID">2011GB004053</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/61487300701F4319BF47883021417FAC46229385/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:61487300701F4319BF47883021417FAC46229385
   |texte=   Integration of MODIS land and atmosphere products with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024