Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Internal tide generation by abyssal hills using analytical theory

Identifieur interne : 001212 ( Istex/Corpus ); précédent : 001211; suivant : 001213

Internal tide generation by abyssal hills using analytical theory

Auteurs : Angélique Melet ; Maxim Nikurashin ; Caroline Muller ; S. Falahat ; Jonas Nycander ; Patrick G. Timko ; Brian K. Arbic ; John A. Goff

Source :

RBID : ISTEX:5FC6F3601399D9AFAA18041A8245EE037172FFB7

English descriptors

Abstract

Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.

Url:
DOI: 10.1002/2013JC009212

Links to Exploration step

ISTEX:5FC6F3601399D9AFAA18041A8245EE037172FFB7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Internal tide generation by abyssal hills using analytical theory</title>
<author>
<name sortKey="Melet, Angelique" sort="Melet, Angelique" uniqKey="Melet A" first="Angélique" last="Melet">Angélique Melet</name>
<affiliation>
<mods:affiliation>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: amelet@princeton.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nikurashin, Maxim" sort="Nikurashin, Maxim" uniqKey="Nikurashin M" first="Maxim" last="Nikurashin">Maxim Nikurashin</name>
<affiliation>
<mods:affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ARC Centre of Excellence for Climate System Science, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Caroline" sort="Muller, Caroline" uniqKey="Muller C" first="Caroline" last="Muller">Caroline Muller</name>
<affiliation>
<mods:affiliation>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique, Palaiseau, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falahat, S" sort="Falahat, S" uniqKey="Falahat S" first="S." last="Falahat">S. Falahat</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nycander, Jonas" sort="Nycander, Jonas" uniqKey="Nycander J" first="Jonas" last="Nycander">Jonas Nycander</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timko, Patrick G" sort="Timko, Patrick G" uniqKey="Timko P" first="Patrick G." last="Timko">Patrick G. Timko</name>
<affiliation>
<mods:affiliation>Centre for Applied Marine Sciences, Bangor University, Menai Bridge, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arbic, Brian K" sort="Arbic, Brian K" uniqKey="Arbic B" first="Brian K." last="Arbic">Brian K. Arbic</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, University of Michigan, Michigan, Ann Arbor, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goff, John A" sort="Goff, John A" uniqKey="Goff J" first="John A." last="Goff">John A. Goff</name>
<affiliation>
<mods:affiliation>Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Texas, Austin, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5FC6F3601399D9AFAA18041A8245EE037172FFB7</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/2013JC009212</idno>
<idno type="url">https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001212</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001212</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Internal tide generation by abyssal hills using analytical theory</title>
<author>
<name sortKey="Melet, Angelique" sort="Melet, Angelique" uniqKey="Melet A" first="Angélique" last="Melet">Angélique Melet</name>
<affiliation>
<mods:affiliation>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: amelet@princeton.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nikurashin, Maxim" sort="Nikurashin, Maxim" uniqKey="Nikurashin M" first="Maxim" last="Nikurashin">Maxim Nikurashin</name>
<affiliation>
<mods:affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ARC Centre of Excellence for Climate System Science, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Caroline" sort="Muller, Caroline" uniqKey="Muller C" first="Caroline" last="Muller">Caroline Muller</name>
<affiliation>
<mods:affiliation>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique, Palaiseau, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falahat, S" sort="Falahat, S" uniqKey="Falahat S" first="S." last="Falahat">S. Falahat</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nycander, Jonas" sort="Nycander, Jonas" uniqKey="Nycander J" first="Jonas" last="Nycander">Jonas Nycander</name>
<affiliation>
<mods:affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timko, Patrick G" sort="Timko, Patrick G" uniqKey="Timko P" first="Patrick G." last="Timko">Patrick G. Timko</name>
<affiliation>
<mods:affiliation>Centre for Applied Marine Sciences, Bangor University, Menai Bridge, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Arbic, Brian K" sort="Arbic, Brian K" uniqKey="Arbic B" first="Brian K." last="Arbic">Brian K. Arbic</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, University of Michigan, Michigan, Ann Arbor, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goff, John A" sort="Goff, John A" uniqKey="Goff J" first="John A." last="Goff">John A. Goff</name>
<affiliation>
<mods:affiliation>Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Texas, Austin, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Oceans</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS</title>
<idno type="ISSN">2169-9275</idno>
<idno type="eISSN">2169-9291</idno>
<imprint>
<biblScope unit="vol">118</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="6303">6303</biblScope>
<biblScope unit="page" to="6318">6318</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-11">2013-11</date>
</imprint>
<idno type="ISSN">2169-9275</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">2169-9275</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abyssal</term>
<term>Abyssal hill</term>
<term>Abyssal hill roughness</term>
<term>Abyssal hills</term>
<term>Acoustic</term>
<term>Acoustic data</term>
<term>Arbic</term>
<term>Baroclinic</term>
<term>Barotropic</term>
<term>Barotropic tides</term>
<term>Bathymetric</term>
<term>Bathymetric product</term>
<term>Bathymetric products</term>
<term>Bathymetric spectra</term>
<term>Bathymetry</term>
<term>Continuous lines</term>
<term>Cutoff length</term>
<term>Deep ocean</term>
<term>Dissipation</term>
<term>East rise</term>
<term>Energy conversion</term>
<term>Geophys</term>
<term>Global</term>
<term>Global energy</term>
<term>Global energy conversion</term>
<term>Global ocean</term>
<term>Global rate</term>
<term>Goff</term>
<term>Grid</term>
<term>Hanning filter</term>
<term>Horizontal wavelength</term>
<term>Internal tide generation</term>
<term>Internal tides</term>
<term>Internal waves</term>
<term>Laurent</term>
<term>Linear theory</term>
<term>Linear wave theory</term>
<term>Llewellyn smith</term>
<term>Lter</term>
<term>Melet</term>
<term>Multibeam data</term>
<term>Nikurashin</term>
<term>Nycander</term>
<term>Oceanic</term>
<term>Oceanogr</term>
<term>Phys</term>
<term>Real space</term>
<term>Real space calculation</term>
<term>Rough topography</term>
<term>Roughness</term>
<term>Sandwell</term>
<term>Spectral space</term>
<term>Subcritical</term>
<term>Supercritical</term>
<term>Supercritical slopes</term>
<term>Synthetic abyssal hill roughness</term>
<term>Tidal</term>
<term>Tidal ellipse</term>
<term>Tidal energy</term>
<term>Tidal energy conversion</term>
<term>Tidal excursion</term>
<term>Tidal velocities</term>
<term>Tidal velocity</term>
<term>Tide</term>
<term>Topographic</term>
<term>Topographic roughness</term>
<term>Topography</term>
<term>Total energy</term>
<term>Uxes</term>
<term>Wavenumber</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abyssal</term>
<term>Abyssal hill</term>
<term>Abyssal hill roughness</term>
<term>Abyssal hills</term>
<term>Acoustic</term>
<term>Acoustic data</term>
<term>Arbic</term>
<term>Baroclinic</term>
<term>Barotropic</term>
<term>Barotropic tides</term>
<term>Bathymetric</term>
<term>Bathymetric product</term>
<term>Bathymetric products</term>
<term>Bathymetric spectra</term>
<term>Bathymetry</term>
<term>Continuous lines</term>
<term>Cutoff length</term>
<term>Deep ocean</term>
<term>Dissipation</term>
<term>East rise</term>
<term>Energy conversion</term>
<term>Geophys</term>
<term>Global</term>
<term>Global energy</term>
<term>Global energy conversion</term>
<term>Global ocean</term>
<term>Global rate</term>
<term>Goff</term>
<term>Grid</term>
<term>Hanning filter</term>
<term>Horizontal wavelength</term>
<term>Internal tide generation</term>
<term>Internal tides</term>
<term>Internal waves</term>
<term>Laurent</term>
<term>Linear theory</term>
<term>Linear wave theory</term>
<term>Llewellyn smith</term>
<term>Lter</term>
<term>Melet</term>
<term>Multibeam data</term>
<term>Nikurashin</term>
<term>Nycander</term>
<term>Oceanic</term>
<term>Oceanogr</term>
<term>Phys</term>
<term>Real space</term>
<term>Real space calculation</term>
<term>Rough topography</term>
<term>Roughness</term>
<term>Sandwell</term>
<term>Spectral space</term>
<term>Subcritical</term>
<term>Supercritical</term>
<term>Supercritical slopes</term>
<term>Synthetic abyssal hill roughness</term>
<term>Tidal</term>
<term>Tidal ellipse</term>
<term>Tidal energy</term>
<term>Tidal energy conversion</term>
<term>Tidal excursion</term>
<term>Tidal velocities</term>
<term>Tidal velocity</term>
<term>Tide</term>
<term>Topographic</term>
<term>Topographic roughness</term>
<term>Topography</term>
<term>Total energy</term>
<term>Uxes</term>
<term>Wavenumber</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>abyssal</json:string>
<json:string>abyssal hills</json:string>
<json:string>internal tides</json:string>
<json:string>bathymetric</json:string>
<json:string>bathymetry</json:string>
<json:string>internal tide generation</json:string>
<json:string>energy conversion</json:string>
<json:string>barotropic</json:string>
<json:string>tidal</json:string>
<json:string>abyssal hill roughness</json:string>
<json:string>nycander</json:string>
<json:string>supercritical slopes</json:string>
<json:string>deep ocean</json:string>
<json:string>goff</json:string>
<json:string>melet</json:string>
<json:string>supercritical</json:string>
<json:string>real space</json:string>
<json:string>geophys</json:string>
<json:string>internal waves</json:string>
<json:string>oceanogr</json:string>
<json:string>dissipation</json:string>
<json:string>phys</json:string>
<json:string>spectral space</json:string>
<json:string>tidal energy conversion</json:string>
<json:string>synthetic abyssal hill roughness</json:string>
<json:string>grid</json:string>
<json:string>bathymetric products</json:string>
<json:string>abyssal hill</json:string>
<json:string>linear theory</json:string>
<json:string>laurent</json:string>
<json:string>roughness</json:string>
<json:string>topographic</json:string>
<json:string>bathymetric product</json:string>
<json:string>lter</json:string>
<json:string>sandwell</json:string>
<json:string>arbic</json:string>
<json:string>wavenumber</json:string>
<json:string>nikurashin</json:string>
<json:string>oceanic</json:string>
<json:string>uxes</json:string>
<json:string>subcritical</json:string>
<json:string>topographic roughness</json:string>
<json:string>baroclinic</json:string>
<json:string>acoustic</json:string>
<json:string>global</json:string>
<json:string>barotropic tides</json:string>
<json:string>cutoff length</json:string>
<json:string>tidal velocity</json:string>
<json:string>global energy</json:string>
<json:string>east rise</json:string>
<json:string>real space calculation</json:string>
<json:string>linear wave theory</json:string>
<json:string>global ocean</json:string>
<json:string>acoustic data</json:string>
<json:string>total energy</json:string>
<json:string>llewellyn smith</json:string>
<json:string>rough topography</json:string>
<json:string>tide</json:string>
<json:string>bathymetric spectra</json:string>
<json:string>continuous lines</json:string>
<json:string>tidal excursion</json:string>
<json:string>tidal velocities</json:string>
<json:string>multibeam data</json:string>
<json:string>horizontal wavelength</json:string>
<json:string>tidal energy</json:string>
<json:string>tidal ellipse</json:string>
<json:string>global rate</json:string>
<json:string>global energy conversion</json:string>
<json:string>hanning filter</json:string>
<json:string>topography</json:string>
<json:string>buoyancy frequencies</json:string>
<json:string>spectral spaces</json:string>
<json:string>abyssal hill figure</json:string>
<json:string>buoyancy frequency</json:string>
<json:string>synthetic realization</json:string>
<json:string>nite depth</json:string>
<json:string>horizontal scales</json:string>
<json:string>steepness parameter</json:string>
<json:string>energy dissipation</json:string>
<json:string>supercritical topography</json:string>
<json:string>bathymetry power</json:string>
<json:string>horizontal wavenumber</json:string>
<json:string>other hand</json:string>
<json:string>barotropic tide</json:string>
<json:string>supercritical slope</json:string>
<json:string>good agreement</json:string>
<json:string>spatial distribution</json:string>
<json:string>global scale</json:string>
<json:string>acoustic soundings</json:string>
<json:string>indian ridge</json:string>
<json:string>abyssal hills contribution</json:string>
<json:string>higher harmonics</json:string>
<json:string>topographic products</json:string>
<json:string>fluid mech</json:string>
<json:string>ocean modell</json:string>
<json:string>abyssal ocean</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Angélique Melet</name>
<affiliations>
<json:string>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</json:string>
<json:string>E-mail: amelet@princeton.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Maxim Nikurashin</name>
<affiliations>
<json:string>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia</json:string>
<json:string>ARC Centre of Excellence for Climate System Science, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Caroline Muller</name>
<affiliations>
<json:string>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique, Palaiseau, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Falahat</name>
<affiliations>
<json:string>Department of Meteorology, Stockholm University, Stockholm, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jonas Nycander</name>
<affiliations>
<json:string>Department of Meteorology, Stockholm University, Stockholm, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>Patrick G. Timko</name>
<affiliations>
<json:string>Centre for Applied Marine Sciences, Bangor University, Menai Bridge, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Brian K. Arbic</name>
<affiliations>
<json:string>Department of Earth and Environmental Sciences, University of Michigan, Michigan, Ann Arbor, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>John A. Goff</name>
<affiliations>
<json:string>Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Texas, Austin, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>internal waves</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>internal tide generation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>linear wave theory</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>small‐scale topography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ocean mixing</value>
</json:item>
</subject>
<articleId>
<json:string>JGRC20454</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8FZ8X2NJ-P</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>9663</pdfWordCount>
<pdfCharCount>57363</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>16</pdfPageCount>
<pdfPageSize>609.789 x 825.052 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>250</abstractWordCount>
<abstractCharCount>1622</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Internal tide generation by abyssal hills using analytical theory</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Oceans</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2169-9291</json:string>
</doi>
<issn>
<json:string>2169-9275</json:string>
</issn>
<eissn>
<json:string>2169-9291</json:string>
</eissn>
<publisherId>
<json:string>JGRC</json:string>
</publisherId>
<volume>118</volume>
<issue>11</issue>
<pages>
<first>6303</first>
<last>6318</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Oceanography: Physical</value>
</json:item>
<json:item>
<value>Internal and inertial waves</value>
</json:item>
<json:item>
<value>Topographic/bathymetric interactions</value>
</json:item>
<json:item>
<value>Tsunamis and storm surges</value>
</json:item>
<json:item>
<value>General circulation</value>
</json:item>
<json:item>
<value>Natural Hazards</value>
</json:item>
<json:item>
<value>Geological</value>
</json:item>
<json:item>
<value>Oceanic</value>
</json:item>
<json:item>
<value>Geodesy and Gravity</value>
</json:item>
<json:item>
<value>Mass balance</value>
</json:item>
<json:item>
<value>Ocean monitoring with geodetic techniques</value>
</json:item>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>30S</json:string>
<json:string>34S</json:string>
<json:string>22S</json:string>
<json:string>26S</json:string>
<json:string>2013-11-11</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>National Science Foundation</json:string>
<json:string>University of Michigan</json:string>
<json:string>Institute for Geophysics, Jackson School of Geosciences, The University of Texas</json:string>
<json:string>Institute for Marine and Antarctic Studies</json:string>
<json:string>Naval Research Laboratory</json:string>
<json:string>IOC, IHO, and BODC</json:string>
<json:string>Department of Commerce</json:string>
<json:string>Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus</json:string>
<json:string>and National Science Foundation</json:string>
<json:string>National Oceanic and Atmospheric Administration</json:string>
<json:string>University of Texas Jackson School of Geosciences Development</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Bangor University</json:string>
<json:string>Department of Meteorology, Stockholm University, Stockholm, Sweden</json:string>
<json:string>Brazil Basin</json:string>
<json:string>Department of Earth and Environmental Sciences</json:string>
<json:string>University of Tasmania</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Marine Sciences</json:string>
<json:string>J. Geophys</json:string>
<json:string>Jonas Nycander</json:string>
<json:string>Hibiya</json:string>
<json:string>B. K. Arbic</json:string>
<json:string>S. Falahat</json:string>
<json:string>J. Nycander</json:string>
<json:string>P. G. Timko</json:string>
<json:string>Patrick G. Timko</json:string>
<json:string>M. Nikurashin</json:string>
<json:string>Caroline Muller</json:string>
<json:string>Ann Arbor</json:string>
<json:string>Iwamae</json:string>
<json:string>C. Muller</json:string>
<json:string>Real Space</json:string>
<json:string>J. A. Goff</json:string>
<json:string>Sonya Legg</json:string>
<json:string>A. Melet</json:string>
<json:string>John A. Goff</json:string>
<json:string>Brian K. Arbic</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>UK</json:string>
<json:string>St. Laurent</json:string>
<json:string>Austin</json:string>
<json:string>Jordan</json:string>
<json:string>Menai Bridge</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Goff and Arbic, 2010</json:string>
<json:string>[12]</json:string>
<json:string>Green and Nycander, 2013</json:string>
<json:string>[1997]</json:string>
<json:string>[18]</json:string>
<json:string>Carter et al. [2008]</json:string>
<json:string>Balmforth and Peacock, 2009</json:string>
<json:string>Gouretski and Koltermann, 2004</json:string>
<json:string>[1970]</json:string>
<json:string>Scott et al., 2011</json:string>
<json:string>Goff and Jordan, 1988</json:string>
<json:string>Egbert and Ray, 2001</json:string>
<json:string>Smith and Young, 2002</json:string>
<json:string>[22]</json:string>
<json:string>Garrett and Kunze, 2007</json:string>
<json:string>Macdonald et al., 1996</json:string>
<json:string>[8]</json:string>
<json:string>[28]</json:string>
<json:string>Egbert and Erofeeva, 2002</json:string>
<json:string>Zhang et al., 2007</json:string>
<json:string>Munk and Wunsch, 1998</json:string>
<json:string>[32]</json:string>
<json:string>Nikurashin and Ferrari, 2010, 2011</json:string>
<json:string>Becker et al., 2009</json:string>
<json:string>Petrelis et al., 2006</json:string>
<json:string>[2013]</json:string>
<json:string>Laurent et al., 2002</json:string>
<json:string>in preparation, 2013</json:string>
<json:string>[16]</json:string>
<json:string>Laurent and Simmons, 2006</json:string>
<json:string>Arbic et al., 2004</json:string>
<json:string>Simmons et al., 2004b</json:string>
<json:string>Timko et al.</json:string>
<json:string>[42]</json:string>
<json:string>Legg and Klymak, 2008</json:string>
<json:string>[2012]</json:string>
<json:string>Marshall and Speer, 2012</json:string>
<json:string>Nikurashin and Legg, 2011</json:string>
<json:string>[1988]</json:string>
<json:string>Simmons et al., 2004a</json:string>
<json:string>Polzin et al., 1997</json:string>
<json:string>[30]</json:string>
<json:string>Sandwell and Smith, 2009</json:string>
<json:string>[25]</json:string>
<json:string>Timko et al. [2009]</json:string>
<json:string>Eckermann et al., 2010</json:string>
<json:string>[9]</json:string>
<json:string>[40]</json:string>
<json:string>Nikurashin and Ferrari, 2013</json:string>
<json:string>[2]</json:string>
<json:string>[13]</json:string>
<json:string>Smith and Sandwell, 1997</json:string>
<json:string>Goff et al., 1997</json:string>
<json:string>Toggweiler and Samuels, 1995</json:string>
<json:string>[19]</json:string>
<json:string>Laurent and Garrett, 2002</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8FZ8X2NJ-P</json:string>
</ark>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/2013JC009212</json:string>
</doi>
<id>5FC6F3601399D9AFAA18041A8245EE037172FFB7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Internal tide generation by abyssal hills using analytical theory</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>©2013. American Geophysical Union. All Rights Reserved.</licence>
</availability>
<date type="published" when="2013-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Internal tide generation by abyssal hills using analytical theory</title>
<title level="a" type="short">INTERNAL TIDE GENERATION BY ABYSSAL HILL</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Angélique</forename>
<surname>Melet</surname>
</persName>
<affiliation>
<orgName>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</orgName>
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Corresponding author: A. Melet, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540, USA. (amelet@princeton.edu)</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Maxim</forename>
<surname>Nikurashin</surname>
</persName>
<affiliation>
<orgName>Institute for Marine and Antarctic Studies</orgName>
<orgName>University of Tasmania</orgName>
<address>
<settlement type="city">Hobart</settlement>
<region>Tasmania</region>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>
<orgName>ARC Centre of Excellence for Climate System Science</orgName>
<address>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Caroline</forename>
<surname>Muller</surname>
</persName>
<affiliation>
<orgName>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique</orgName>
<address>
<settlement type="city">Palaiseau</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">S.</forename>
<surname>Falahat</surname>
</persName>
<affiliation>
<orgName>Department of Meteorology</orgName>
<orgName>Stockholm University</orgName>
<address>
<settlement type="city">Stockholm</settlement>
<country key="SE">Sweden</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Jonas</forename>
<surname>Nycander</surname>
</persName>
<affiliation>
<orgName>Department of Meteorology</orgName>
<orgName>Stockholm University</orgName>
<address>
<settlement type="city">Stockholm</settlement>
<country key="SE">Sweden</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Patrick G.</forename>
<surname>Timko</surname>
</persName>
<affiliation>
<orgName>Centre for Applied Marine Sciences</orgName>
<orgName>Bangor University</orgName>
<address>
<settlement type="city">Menai Bridge</settlement>
<country key="GB">UK</country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Brian K.</forename>
<surname>Arbic</surname>
</persName>
<affiliation>
<orgName>Department of Earth and Environmental Sciences</orgName>
<orgName>University of Michigan</orgName>
<address>
<settlement type="city">Ann Arbor</settlement>
<region>Michigan</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">John A.</forename>
<surname>Goff</surname>
</persName>
<affiliation>
<orgName>Institute for Geophysics</orgName>
<orgName>Jackson School of Geosciences</orgName>
<orgName>The University of Texas at Austin</orgName>
<address>
<settlement type="city">Austin</settlement>
<region>Texas</region>
<country key="US">USA.</country>
</address>
</affiliation>
</author>
<idno type="istex">5FC6F3601399D9AFAA18041A8245EE037172FFB7</idno>
<idno type="ark">ark:/67375/WNG-8FZ8X2NJ-P</idno>
<idno type="DOI">10.1002/2013JC009212</idno>
<idno type="unit">JGRC20454</idno>
<idno type="toTypesetVersion">file:JGRC.JGRC20454.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Oceans</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS</title>
<idno type="pISSN">2169-9275</idno>
<idno type="eISSN">2169-9291</idno>
<idno type="book-DOI">10.1002/(ISSN)2169-9291</idno>
<idno type="book-part-DOI">10.1002/jgrc.v118.11</idno>
<idno type="product">JGRC</idno>
<imprint>
<biblScope unit="vol">118</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="6303">6303</biblScope>
<biblScope unit="page" to="6318">6318</biblScope>
<biblScope unit="page-count">16</biblScope>
<date type="published" when="2013-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p>Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M
<hi rend="subscript">2</hi>
barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p>
<list style="bulleted">
<item>Internal‐tide generation by abyssal hills is calculated from linear theory</item>
<item>Internal‐tide generation by abyssal hills integrates to 0.1 TW globally</item>
<item>The energy flux can be doubled over mid‐ocean ridges due to abyssal hills</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrc20454-kwd-0001">internal waves</term>
<term xml:id="jgrc20454-kwd-0002">internal tide generation</term>
<term xml:id="jgrc20454-kwd-0003">linear wave theory</term>
<term xml:id="jgrc20454-kwd-0004">small‐scale topography</term>
<term xml:id="jgrc20454-kwd-0005">ocean mixing</term>
</keywords>
<classCode scheme="http://psi.agu.org/taxonomy5/4500">Oceanography: Physical</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4300">Natural Hazards</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1200">Geodesy and Gravity</classCode>
<keywords rend="articleCategory">
<term>Regular Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Regular Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="jgrc20454">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)2169-9291</doi>
<issn type="print">2169-9275</issn>
<issn type="electronic">2169-9291</issn>
<idGroup>
<id type="product" value="JGRC"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS">Journal of Geophysical Research: Oceans</title>
<title type="short">J. Geophys. Res. Oceans</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="110">
<doi>10.1002/jgrc.v118.11</doi>
<copyright ownership="thirdParty">©2013. American Geophysical Union. All Rights Reserved.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="118">118</numbering>
<numbering type="journalIssue">11</numbering>
</numberingGroup>
<coverDate startDate="2013-11">November 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="290" type="article" status="forIssue">
<doi>10.1002/2013JC009212</doi>
<idGroup>
<id type="unit" value="JGRC20454"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Articles</title>
</titleGroup>
<copyright ownership="thirdParty">©2013. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2013-06-14"></event>
<event type="manuscriptRevised" date="2013-10-28"></event>
<event type="manuscriptAccepted" date="2013-10-28"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2013-11-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.3 mode:FullText" date="2014-07-24"></event>
<event type="publishedOnlineAccepted" date="2013-11-07"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-11-26"></event>
<event type="publishedOnlineFinalForm" date="2013-12-09"></event>
<event type="firstOnline" date="2013-11-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.7.5 mode:FullText" date="2016-01-21"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">6303</numbering>
<numbering type="pageLast">6318</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author: A. Melet, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540, USA. (
<email>amelet@princeton.edu</email>
)</correspondenceTo>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4500">Oceanography: Physical</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4544">Internal and inertial waves</subject>
<subject href="http://psi.agu.org/taxonomy5/4562">Topographic/bathymetric interactions</subject>
<subject href="http://psi.agu.org/taxonomy5/4564">Tsunamis and storm surges</subject>
<subject href="http://psi.agu.org/taxonomy5/4532">General circulation</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">Natural Hazards</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4302">Geological</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4304">Oceanic</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">Geodesy and Gravity</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1218">Mass balance</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrc20454-cit-0059" type="self">
<author>
<familyName>Melet</familyName>
,
<givenNames>A.</givenNames>
</author>
,
<author>
<givenNames>M.</givenNames>
<familyName>Nikurashin</familyName>
</author>
,
<author>
<givenNames>C.</givenNames>
<familyName>Muller</familyName>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Falahat</familyName>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Nycander</familyName>
</author>
,
<author>
<givenNames>P. G.</givenNames>
<familyName>Timko</familyName>
</author>
,
<author>
<givenNames>B. K.</givenNames>
<familyName>Arbic</familyName>
</author>
, and
<author>
<givenNames>J. A.</givenNames>
<familyName>Goff</familyName>
</author>
(
<pubYear year="2013">2013</pubYear>
),
<articleTitle>Internal tide generation by abyssal hills using analytical theory</articleTitle>
,
<journalTitle>J. Geophys. Res. Oceans</journalTitle>
,
<vol>118</vol>
,
<pageFirst>6303</pageFirst>
<pageLast>6318</pageLast>
, doi:
<accessionId ref="info:doi/10.1002/2013JC009212">10.1002/2013JC009212</accessionId>
. </citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRC.JGRC20454.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Internal tide generation by abyssal hills using analytical theory</title>
<title type="short">INTERNAL TIDE GENERATION BY ABYSSAL HILL</title>
<title type="shortAuthors">MELET ET AL.</title>
</titleGroup>
<creators>
<creator affiliationRef="#jgrc20454-aff-0001" corresponding="yes" creatorRole="author" xml:id="jgrc20454-cr-0001">
<personName>
<givenNames>Angélique</givenNames>
<familyName>Melet</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0002 #jgrc20454-aff-0003" creatorRole="author" xml:id="jgrc20454-cr-0002">
<personName>
<givenNames>Maxim</givenNames>
<familyName>Nikurashin</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0004" creatorRole="author" xml:id="jgrc20454-cr-0003">
<personName>
<givenNames>Caroline</givenNames>
<familyName>Muller</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0005" creatorRole="author" xml:id="jgrc20454-cr-0004">
<personName>
<givenNames>S.</givenNames>
<familyName>Falahat</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0005" creatorRole="author" xml:id="jgrc20454-cr-0005">
<personName>
<givenNames>Jonas</givenNames>
<familyName>Nycander</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0006" creatorRole="author" xml:id="jgrc20454-cr-0006">
<personName>
<givenNames>Patrick G.</givenNames>
<familyName>Timko</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0007" creatorRole="author" xml:id="jgrc20454-cr-0007">
<personName>
<givenNames>Brian K.</givenNames>
<familyName>Arbic</familyName>
</personName>
</creator>
<creator affiliationRef="#jgrc20454-aff-0008" creatorRole="author" xml:id="jgrc20454-cr-0008">
<personName>
<givenNames>John A.</givenNames>
<familyName>Goff</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrc20454-aff-0001">
<orgName>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</orgName>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="jgrc20454-aff-0002">
<orgName>Institute for Marine and Antarctic Studies</orgName>
<orgName>University of Tasmania</orgName>
<address>
<city>Hobart</city>
<countryPart>Tasmania</countryPart>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="jgrc20454-aff-0003">
<orgName>ARC Centre of Excellence for Climate System Science</orgName>
<address>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrc20454-aff-0004">
<orgName>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique</orgName>
<address>
<city>Palaiseau</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="SE" type="organization" xml:id="jgrc20454-aff-0005">
<orgDiv>Department of Meteorology</orgDiv>
<orgName>Stockholm University</orgName>
<address>
<city>Stockholm</city>
<country>Sweden</country>
</address>
</affiliation>
<affiliation countryCode="GB" type="organization" xml:id="jgrc20454-aff-0006">
<orgDiv>Centre for Applied Marine Sciences</orgDiv>
<orgName>Bangor University</orgName>
<address>
<city>Menai Bridge</city>
<country>UK</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrc20454-aff-0007">
<orgDiv>Department of Earth and Environmental Sciences</orgDiv>
<orgName>University of Michigan</orgName>
<address>
<city>Ann Arbor</city>
<countryPart>Michigan</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrc20454-aff-0008">
<orgName>Institute for Geophysics</orgName>
<orgName>Jackson School of Geosciences</orgName>
<orgName>The University of Texas at Austin</orgName>
<address>
<city>Austin</city>
<countryPart>Texas</countryPart>
<country>USA.</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrc20454-kwd-0001">internal waves</keyword>
<keyword xml:id="jgrc20454-kwd-0002">internal tide generation</keyword>
<keyword xml:id="jgrc20454-kwd-0003">linear wave theory</keyword>
<keyword xml:id="jgrc20454-kwd-0004">small‐scale topography</keyword>
<keyword xml:id="jgrc20454-kwd-0005">ocean mixing</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p label="1">Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M
<sub>2</sub>
barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p>
<list style="bulleted">
<listItem>Internal‐tide generation by abyssal hills is calculated from linear theory</listItem>
<listItem>Internal‐tide generation by abyssal hills integrates to 0.1 TW globally</listItem>
<listItem>The energy flux can be doubled over mid‐ocean ridges due to abyssal hills</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Internal tide generation by abyssal hills using analytical theory</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>INTERNAL TIDE GENERATION BY ABYSSAL HILL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Internal tide generation by abyssal hills using analytical theory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Angélique</namePart>
<namePart type="family">Melet</namePart>
<affiliation>Program in Atmospheric and Oceanic Sciences Princeton University Princeton, New Jersey, USA</affiliation>
<affiliation>E-mail: amelet@princeton.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Nikurashin</namePart>
<affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia</affiliation>
<affiliation>ARC Centre of Excellence for Climate System Science, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline</namePart>
<namePart type="family">Muller</namePart>
<affiliation>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique, Palaiseau, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Falahat</namePart>
<affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Nycander</namePart>
<affiliation>Department of Meteorology, Stockholm University, Stockholm, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick G.</namePart>
<namePart type="family">Timko</namePart>
<affiliation>Centre for Applied Marine Sciences, Bangor University, Menai Bridge, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian K.</namePart>
<namePart type="family">Arbic</namePart>
<affiliation>Department of Earth and Environmental Sciences, University of Michigan, Michigan, Ann Arbor, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John A.</namePart>
<namePart type="family">Goff</namePart>
<affiliation>Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Texas, Austin, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-11</dateIssued>
<dateCreated encoding="w3cdtf">2013-11-11</dateCreated>
<dateCaptured encoding="w3cdtf">2013-06-14</dateCaptured>
<dateValid encoding="w3cdtf">2013-10-28</dateValid>
<edition>Melet, A., M. Nikurashin, C. Muller, S. Falahat, J. Nycander, P. G. Timko, B. K. Arbic, and J. A. Goff (2013), Internal tide generation by abyssal hills using analytical theory, J. Geophys. Res. Oceans, 118, 6303–6318, doi:10.1002/2013JC009212.</edition>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ∼10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal‐tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ∼10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid‐ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid‐Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid‐ocean ridges.</abstract>
<abstract type="short">Internal‐tide generation by abyssal hills is calculated from linear theory Internal‐tide generation by abyssal hills integrates to 0.1 TW globally The energy flux can be doubled over mid‐ocean ridges due to abyssal hills</abstract>
<subject>
<genre>keywords</genre>
<topic>internal waves</topic>
<topic>internal tide generation</topic>
<topic>linear wave theory</topic>
<topic>small‐scale topography</topic>
<topic>ocean mixing</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Oceans</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res. Oceans</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">Oceanography: Physical</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4544">Internal and inertial waves</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4562">Topographic/bathymetric interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4564">Tsunamis and storm surges</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4532">General circulation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">Natural Hazards</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4302">Geological</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4304">Oceanic</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">Geodesy and Gravity</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1218">Mass balance</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">2169-9275</identifier>
<identifier type="eISSN">2169-9291</identifier>
<identifier type="DOI">10.1002/(ISSN)2169-9291</identifier>
<identifier type="PublisherID">JGRC</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>118</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>6303</start>
<end>6318</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">5FC6F3601399D9AFAA18041A8245EE037172FFB7</identifier>
<identifier type="ark">ark:/67375/WNG-8FZ8X2NJ-P</identifier>
<identifier type="DOI">10.1002/2013JC009212</identifier>
<identifier type="ArticleID">JGRC20454</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2013. American Geophysical Union. All Rights Reserved.©2013. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/5FC6F3601399D9AFAA18041A8245EE037172FFB7/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001212 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001212 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5FC6F3601399D9AFAA18041A8245EE037172FFB7
   |texte=   Internal tide generation by abyssal hills using analytical theory
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024