Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil biota and global change at the ecosystem level: describing soil biota in mathematical models

Identifieur interne : 001005 ( Istex/Corpus ); précédent : 001004; suivant : 001006

Soil biota and global change at the ecosystem level: describing soil biota in mathematical models

Auteurs : Pete. Smith ; Olof. Andrén ; Lijbert Brussaard ; Mark. Dangerfield ; Klemens Ekschmitt ; Patrick Lavelle ; Kevin Tate

Source :

RBID : ISTEX:5519D0495A4D301E94B465FB4D3F2DEA6B368121

English descriptors

Abstract

All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.

Url:
DOI: 10.1046/j.1365-2486.1998.00193.x

Links to Exploration step

ISTEX:5519D0495A4D301E94B465FB4D3F2DEA6B368121

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
<author>
<name sortKey="Smith, Pete" sort="Smith, Pete" uniqKey="Smith P" first="Pete." last="Smith">Pete. Smith</name>
<affiliation>
<mods:affiliation>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andren, Olof" sort="Andren, Olof" uniqKey="Andren O" first="Olof." last="Andrén">Olof. Andrén</name>
<affiliation>
<mods:affiliation>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brussaard, Lijbert" sort="Brussaard, Lijbert" uniqKey="Brussaard L" first="Lijbert" last="Brussaard">Lijbert Brussaard</name>
<affiliation>
<mods:affiliation>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dangerfield, Mark" sort="Dangerfield, Mark" uniqKey="Dangerfield M" first="Mark." last="Dangerfield">Mark. Dangerfield</name>
<affiliation>
<mods:affiliation>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ekschmitt, Klemens" sort="Ekschmitt, Klemens" uniqKey="Ekschmitt K" first="Klemens" last="Ekschmitt">Klemens Ekschmitt</name>
<affiliation>
<mods:affiliation>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavelle, Patrick" sort="Lavelle, Patrick" uniqKey="Lavelle P" first="Patrick" last="Lavelle">Patrick Lavelle</name>
<affiliation>
<mods:affiliation>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Kevin" sort="Tate, Kevin" uniqKey="Tate K" first="Kevin" last="Tate">Kevin Tate</name>
<affiliation>
<mods:affiliation>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5519D0495A4D301E94B465FB4D3F2DEA6B368121</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1046/j.1365-2486.1998.00193.x</idno>
<idno type="url">https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001005</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001005</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
<author>
<name sortKey="Smith, Pete" sort="Smith, Pete" uniqKey="Smith P" first="Pete." last="Smith">Pete. Smith</name>
<affiliation>
<mods:affiliation>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andren, Olof" sort="Andren, Olof" uniqKey="Andren O" first="Olof." last="Andrén">Olof. Andrén</name>
<affiliation>
<mods:affiliation>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brussaard, Lijbert" sort="Brussaard, Lijbert" uniqKey="Brussaard L" first="Lijbert" last="Brussaard">Lijbert Brussaard</name>
<affiliation>
<mods:affiliation>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dangerfield, Mark" sort="Dangerfield, Mark" uniqKey="Dangerfield M" first="Mark." last="Dangerfield">Mark. Dangerfield</name>
<affiliation>
<mods:affiliation>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ekschmitt, Klemens" sort="Ekschmitt, Klemens" uniqKey="Ekschmitt K" first="Klemens" last="Ekschmitt">Klemens Ekschmitt</name>
<affiliation>
<mods:affiliation>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavelle, Patrick" sort="Lavelle, Patrick" uniqKey="Lavelle P" first="Patrick" last="Lavelle">Patrick Lavelle</name>
<affiliation>
<mods:affiliation>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Kevin" sort="Tate, Kevin" uniqKey="Tate K" first="Kevin" last="Tate">Kevin Tate</name>
<affiliation>
<mods:affiliation>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="773">773</biblScope>
<biblScope unit="page" to="784">784</biblScope>
<biblScope unit="page-count">12 </biblScope>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1998-10">1998-10</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agricultural science</term>
<term>America journal</term>
<term>Andren</term>
<term>Belowground food webs</term>
<term>Biodiversity</term>
<term>Biomass</term>
<term>Biota</term>
<term>Blackwell science</term>
<term>Brussaard</term>
<term>Case daisy</term>
<term>Century model</term>
<term>Chertov komarov</term>
<term>Climate change</term>
<term>Csiro information services</term>
<term>Current models</term>
<term>Datasets</term>
<term>Detrital food</term>
<term>Detrital model</term>
<term>Different scales</term>
<term>Dynamics</term>
<term>Earthworm</term>
<term>Earthworm activities</term>
<term>Earthworm activity</term>
<term>Ecological</term>
<term>Ecological bulletins</term>
<term>Ecological modelling</term>
<term>Ecology</term>
<term>Ecosystem</term>
<term>Ecosystem engineers</term>
<term>Ecosystem level</term>
<term>Ecosystem models</term>
<term>Ecosystem processes</term>
<term>Ecosystem scale</term>
<term>Explicit description</term>
<term>Fertilizer research</term>
<term>Food webs</term>
<term>Functional groups</term>
<term>Further research</term>
<term>Future process rate</term>
<term>Gcte</term>
<term>Gcte focus</term>
<term>Gcte somnet</term>
<term>Global</term>
<term>Global biogeochemical cycles</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Global change research</term>
<term>Global change studies</term>
<term>Grassland</term>
<term>Gupta vvsr</term>
<term>Hierarchical approach</term>
<term>Humus forms</term>
<term>Implicit description</term>
<term>Jenkinson</term>
<term>Longterm datasets</term>
<term>Many models</term>
<term>Mathematical models</term>
<term>Matter dynamics</term>
<term>Matter models</term>
<term>Matter network</term>
<term>Mcgill</term>
<term>Microbial</term>
<term>Microbial biomass</term>
<term>Mineralization</term>
<term>Model structure</term>
<term>Modelling</term>
<term>Modelling approach</term>
<term>Molina</term>
<term>Molina smith</term>
<term>Nitrogen dynamics</term>
<term>Nitrogen mineralization</term>
<term>Nitrogen transformations</term>
<term>Nutrient cycling</term>
<term>Nutrient dynamics</term>
<term>Organic matter</term>
<term>Organic matter models</term>
<term>Organism</term>
<term>Organismorientated</term>
<term>Organismorientated components</term>
<term>Organismorientated models</term>
<term>Other models</term>
<term>Parton</term>
<term>Paustian</term>
<term>Perennial pasture</term>
<term>Personal communication</term>
<term>Philosophical transactions</term>
<term>Potential effects</term>
<term>Powlson</term>
<term>Predictive</term>
<term>Predictive purposes</term>
<term>Predictive tools</term>
<term>Process rate</term>
<term>Real world</term>
<term>Relative advantages</term>
<term>Research tools</term>
<term>Response surface</term>
<term>Royal society</term>
<term>Ruiter</term>
<term>Same problem</term>
<term>Schematic diagram</term>
<term>Schimel</term>
<term>Schimel gulledge</term>
<term>Simulating</term>
<term>Simulating trends</term>
<term>Simulation</term>
<term>Simulation model</term>
<term>Simulation models</term>
<term>Soil biodiversity</term>
<term>Soil biology</term>
<term>Soil biota</term>
<term>Soil carbon</term>
<term>Soil community</term>
<term>Soil community function</term>
<term>Soil community structure</term>
<term>Soil ecosystem models</term>
<term>Soil fauna</term>
<term>Soil organisms</term>
<term>Soil science</term>
<term>Soil science department</term>
<term>Soil science society</term>
<term>Soil structure</term>
<term>Soil system</term>
<term>Somnet</term>
<term>Special issue</term>
<term>Springer</term>
<term>Sustainable farming systems</term>
<term>System feedbacks</term>
<term>Taxonomic groups</term>
<term>Terrestrial ecosystems</term>
<term>Theoretical analysis</term>
<term>Turnover</term>
<term>Turnover rates</term>
<term>Various approaches</term>
<term>Winter wheat</term>
<term>Wormless pasture</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Agricultural science</term>
<term>America journal</term>
<term>Andren</term>
<term>Belowground food webs</term>
<term>Biodiversity</term>
<term>Biomass</term>
<term>Biota</term>
<term>Blackwell science</term>
<term>Brussaard</term>
<term>Case daisy</term>
<term>Century model</term>
<term>Chertov komarov</term>
<term>Climate change</term>
<term>Csiro information services</term>
<term>Current models</term>
<term>Datasets</term>
<term>Detrital food</term>
<term>Detrital model</term>
<term>Different scales</term>
<term>Dynamics</term>
<term>Earthworm</term>
<term>Earthworm activities</term>
<term>Earthworm activity</term>
<term>Ecological</term>
<term>Ecological bulletins</term>
<term>Ecological modelling</term>
<term>Ecology</term>
<term>Ecosystem</term>
<term>Ecosystem engineers</term>
<term>Ecosystem level</term>
<term>Ecosystem models</term>
<term>Ecosystem processes</term>
<term>Ecosystem scale</term>
<term>Explicit description</term>
<term>Fertilizer research</term>
<term>Food webs</term>
<term>Functional groups</term>
<term>Further research</term>
<term>Future process rate</term>
<term>Gcte</term>
<term>Gcte focus</term>
<term>Gcte somnet</term>
<term>Global</term>
<term>Global biogeochemical cycles</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Global change research</term>
<term>Global change studies</term>
<term>Grassland</term>
<term>Gupta vvsr</term>
<term>Hierarchical approach</term>
<term>Humus forms</term>
<term>Implicit description</term>
<term>Jenkinson</term>
<term>Longterm datasets</term>
<term>Many models</term>
<term>Mathematical models</term>
<term>Matter dynamics</term>
<term>Matter models</term>
<term>Matter network</term>
<term>Mcgill</term>
<term>Microbial</term>
<term>Microbial biomass</term>
<term>Mineralization</term>
<term>Model structure</term>
<term>Modelling</term>
<term>Modelling approach</term>
<term>Molina</term>
<term>Molina smith</term>
<term>Nitrogen dynamics</term>
<term>Nitrogen mineralization</term>
<term>Nitrogen transformations</term>
<term>Nutrient cycling</term>
<term>Nutrient dynamics</term>
<term>Organic matter</term>
<term>Organic matter models</term>
<term>Organism</term>
<term>Organismorientated</term>
<term>Organismorientated components</term>
<term>Organismorientated models</term>
<term>Other models</term>
<term>Parton</term>
<term>Paustian</term>
<term>Perennial pasture</term>
<term>Personal communication</term>
<term>Philosophical transactions</term>
<term>Potential effects</term>
<term>Powlson</term>
<term>Predictive</term>
<term>Predictive purposes</term>
<term>Predictive tools</term>
<term>Process rate</term>
<term>Real world</term>
<term>Relative advantages</term>
<term>Research tools</term>
<term>Response surface</term>
<term>Royal society</term>
<term>Ruiter</term>
<term>Same problem</term>
<term>Schematic diagram</term>
<term>Schimel</term>
<term>Schimel gulledge</term>
<term>Simulating</term>
<term>Simulating trends</term>
<term>Simulation</term>
<term>Simulation model</term>
<term>Simulation models</term>
<term>Soil biodiversity</term>
<term>Soil biology</term>
<term>Soil biota</term>
<term>Soil carbon</term>
<term>Soil community</term>
<term>Soil community function</term>
<term>Soil community structure</term>
<term>Soil ecosystem models</term>
<term>Soil fauna</term>
<term>Soil organisms</term>
<term>Soil science</term>
<term>Soil science department</term>
<term>Soil science society</term>
<term>Soil structure</term>
<term>Soil system</term>
<term>Somnet</term>
<term>Special issue</term>
<term>Springer</term>
<term>Sustainable farming systems</term>
<term>System feedbacks</term>
<term>Taxonomic groups</term>
<term>Terrestrial ecosystems</term>
<term>Theoretical analysis</term>
<term>Turnover</term>
<term>Turnover rates</term>
<term>Various approaches</term>
<term>Winter wheat</term>
<term>Wormless pasture</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>ecosystem</json:string>
<json:string>biomass</json:string>
<json:string>global change</json:string>
<json:string>biota</json:string>
<json:string>soil biota</json:string>
<json:string>powlson</json:string>
<json:string>modelling</json:string>
<json:string>paustian</json:string>
<json:string>global change biology</json:string>
<json:string>soil organisms</json:string>
<json:string>datasets</json:string>
<json:string>matter models</json:string>
<json:string>ruiter</json:string>
<json:string>jenkinson</json:string>
<json:string>blackwell science</json:string>
<json:string>ecology</json:string>
<json:string>somnet</json:string>
<json:string>brussaard</json:string>
<json:string>mcgill</json:string>
<json:string>molina</json:string>
<json:string>mineralization</json:string>
<json:string>gcte</json:string>
<json:string>simulating</json:string>
<json:string>andren</json:string>
<json:string>mathematical models</json:string>
<json:string>springer</json:string>
<json:string>parton</json:string>
<json:string>schimel</json:string>
<json:string>functional groups</json:string>
<json:string>global</json:string>
<json:string>ecological modelling</json:string>
<json:string>biodiversity</json:string>
<json:string>soil system</json:string>
<json:string>organismorientated</json:string>
<json:string>soil biology</json:string>
<json:string>earthworm</json:string>
<json:string>microbial biomass</json:string>
<json:string>process rate</json:string>
<json:string>grassland</json:string>
<json:string>soil biodiversity</json:string>
<json:string>special issue</json:string>
<json:string>predictive purposes</json:string>
<json:string>ecosystem level</json:string>
<json:string>matter network</json:string>
<json:string>global change research</json:string>
<json:string>research tools</json:string>
<json:string>simulation model</json:string>
<json:string>soil community function</json:string>
<json:string>simulation</json:string>
<json:string>terrestrial ecosystems</json:string>
<json:string>climate change</json:string>
<json:string>nitrogen dynamics</json:string>
<json:string>soil carbon</json:string>
<json:string>soil community structure</json:string>
<json:string>nitrogen mineralization</json:string>
<json:string>soil community</json:string>
<json:string>explicit description</json:string>
<json:string>food webs</json:string>
<json:string>many models</json:string>
<json:string>microbial</json:string>
<json:string>fertilizer research</json:string>
<json:string>organismorientated models</json:string>
<json:string>simulating trends</json:string>
<json:string>soil structure</json:string>
<json:string>taxonomic groups</json:string>
<json:string>ecosystem engineers</json:string>
<json:string>ecosystem scale</json:string>
<json:string>schimel gulledge</json:string>
<json:string>ecological</json:string>
<json:string>turnover</json:string>
<json:string>dynamics</json:string>
<json:string>predictive</json:string>
<json:string>organism</json:string>
<json:string>gcte somnet</json:string>
<json:string>matter dynamics</json:string>
<json:string>molina smith</json:string>
<json:string>humus forms</json:string>
<json:string>chertov komarov</json:string>
<json:string>ecosystem models</json:string>
<json:string>model structure</json:string>
<json:string>potential effects</json:string>
<json:string>different scales</json:string>
<json:string>predictive tools</json:string>
<json:string>soil ecosystem models</json:string>
<json:string>same problem</json:string>
<json:string>personal communication</json:string>
<json:string>soil fauna</json:string>
<json:string>global change studies</json:string>
<json:string>ecosystem processes</json:string>
<json:string>system feedbacks</json:string>
<json:string>organic matter</json:string>
<json:string>other models</json:string>
<json:string>organismorientated components</json:string>
<json:string>earthworm activities</json:string>
<json:string>century model</json:string>
<json:string>earthworm activity</json:string>
<json:string>wormless pasture</json:string>
<json:string>organic matter models</json:string>
<json:string>detrital food</json:string>
<json:string>future process rate</json:string>
<json:string>simulation models</json:string>
<json:string>response surface</json:string>
<json:string>current models</json:string>
<json:string>implicit description</json:string>
<json:string>further research</json:string>
<json:string>gcte focus</json:string>
<json:string>theoretical analysis</json:string>
<json:string>turnover rates</json:string>
<json:string>ecological bulletins</json:string>
<json:string>nutrient dynamics</json:string>
<json:string>case daisy</json:string>
<json:string>modelling approach</json:string>
<json:string>hierarchical approach</json:string>
<json:string>winter wheat</json:string>
<json:string>agricultural science</json:string>
<json:string>relative advantages</json:string>
<json:string>various approaches</json:string>
<json:string>longterm datasets</json:string>
<json:string>nutrient cycling</json:string>
<json:string>soil science society</json:string>
<json:string>america journal</json:string>
<json:string>real world</json:string>
<json:string>nitrogen transformations</json:string>
<json:string>soil science department</json:string>
<json:string>soil science</json:string>
<json:string>philosophical transactions</json:string>
<json:string>royal society</json:string>
<json:string>global biogeochemical cycles</json:string>
<json:string>perennial pasture</json:string>
<json:string>detrital model</json:string>
<json:string>sustainable farming systems</json:string>
<json:string>gupta vvsr</json:string>
<json:string>csiro information services</json:string>
<json:string>belowground food webs</json:string>
<json:string>schematic diagram</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>PETE. SMITH</name>
<affiliations>
<json:string>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</json:string>
</affiliations>
</json:item>
<json:item>
<name>OLOF. ANDRÉN</name>
<affiliations>
<json:string>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,</json:string>
</affiliations>
</json:item>
<json:item>
<name>LIJBERT BRUSSAARD</name>
<affiliations>
<json:string>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MARK. DANGERFIELD</name>
<affiliations>
<json:string>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,</json:string>
</affiliations>
</json:item>
<json:item>
<name>KLEMENS EKSCHMITT</name>
<affiliations>
<json:string>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>PATRICK LAVELLE</name>
<affiliations>
<json:string>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,</json:string>
</affiliations>
</json:item>
<json:item>
<name>KEVIN TATE</name>
<affiliations>
<json:string>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ecosystem</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>global environmental change</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mathematical models</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil biota</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil organic matter network (SOMNET)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil organic matter</value>
</json:item>
</subject>
<articleId>
<json:string>GCB193</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-P2RB3W79-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>7501</pdfWordCount>
<pdfCharCount>46507</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>282</abstractWordCount>
<abstractCharCount>1898</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Global Change Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
<issn>
<json:string>1354-1013</json:string>
</issn>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<volume>4</volume>
<issue>7</issue>
<pages>
<first>773</first>
<last>784</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1998</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Blackwell Science Ltd</json:string>
<json:string>New Zealand Abstract All</json:string>
<json:string>Department of Terrestrial Ecology</json:string>
<json:string>Blackwell Science Ltd.</json:string>
<json:string>Landcare Research, Massey University, Private Bag</json:string>
<json:string>SCOPEGRAM, members</json:string>
<json:string>Wageningen Agricultural University</json:string>
<json:string>Biological Sciences Research Council of the United Kingdom</json:string>
<json:string>PhD Thesis</json:string>
<json:string>Macquarie University</json:string>
<json:string>Department of Animal Ecology, University of Giessen, Stephanstrasse</json:string>
<json:string>Soil Science Department, SLU, PO Box</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>David Powlson</json:string>
<json:string>In</json:string>
<json:string>P.C. de Ruiter</json:string>
<json:string>M. Van</json:string>
<json:string>Jo Smith</json:string>
<json:string>Pete Smith</json:string>
<json:string>John Ingram</json:string>
<json:string>O.W. Heal</json:string>
<json:string>Van Faassen</json:string>
</persName>
<placeName>
<json:string>Uppsala</json:string>
<json:string>Germany</json:string>
<json:string>Australia</json:string>
<json:string>Edinburgh</json:string>
<json:string>France</json:string>
<json:string>Sweden</json:string>
<json:string>Netherlands</json:string>
<json:string>Noordwijk</json:string>
</placeName>
<ref_url>
<json:string>http://yacorba.res.bbsrc.ac.uk/cgi-bin/somnet</json:string>
</ref_url>
<ref_bibl>
<json:string>Lavelle et al. (1997)</json:string>
<json:string>Smith et al. 1996a,b</json:string>
<json:string>Hunt et al. 1984</json:string>
<json:string>Svendsen et al. (1995)</json:string>
<json:string>Donigan et al. 1994</json:string>
<json:string>Franko 1996</json:string>
<json:string>Kelly et al. 1997</json:string>
<json:string>Schimel et al. 1994</json:string>
<json:string>Hunt 1977</json:string>
<json:string>Andren et al. 1990</json:string>
<json:string>Grant (1995)</json:string>
<json:string>Christensen (1996)</json:string>
<json:string>Molina et al. (1983)</json:string>
<json:string>de Ruiter et al. 1993b, 1994, 1995</json:string>
<json:string>Neill et al. 1986</json:string>
<json:string>Paustian et al. 1990</json:string>
<json:string>De Ruiter et al. 1995</json:string>
<json:string>Molina et al. 1997</json:string>
<json:string>Coleman et al. 1997</json:string>
<json:string>Elliott et al. (1996)</json:string>
<json:string>Hassink et al. 1994</json:string>
<json:string>Arah 1996</json:string>
<json:string>Powlson et al. 1996</json:string>
<json:string>Swift et al. 1998</json:string>
<json:string>Jenny 1941</json:string>
<json:string>Verberne et al. (1990)</json:string>
<json:string>Andren et al. 1994</json:string>
<json:string>Parton et al. (1988)</json:string>
<json:string>Paustian 1994</json:string>
<json:string>Post et al. 1982</json:string>
<json:string>Paustian (1994)</json:string>
<json:string>Brussaard 1997</json:string>
<json:string>Grant et al. (1993a,b)</json:string>
<json:string>Mueller et al. 1996</json:string>
<json:string>Hunt et al. (1987)</json:string>
<json:string>de Ruiter et al. (1993a)</json:string>
<json:string>Beare et al. 1994</json:string>
<json:string>Hunt et al. 1987</json:string>
<json:string>Jenkinson 1990</json:string>
<json:string>Franko et al. (1995)</json:string>
<json:string>Pielou 1981</json:string>
<json:string>Smith et al. (1996b)</json:string>
<json:string>Andre et al. (1994)</json:string>
<json:string>Franko (1996)</json:string>
<json:string>Mueller et al. (1996)</json:string>
<json:string>de Ruiter et al. (1993a, 1994)</json:string>
<json:string>Parton et al. 1995</json:string>
<json:string>Molina et al. 1983</json:string>
<json:string>McGill (1996)</json:string>
<json:string>Hunt et al. 1984, 1987</json:string>
<json:string>Bosatta & Ågren 1985</json:string>
<json:string>Smith et al. 1997b</json:string>
<json:string>Jenkinson 1977</json:string>
<json:string>Hunt et al. 1991</json:string>
<json:string>Vanclooster et al. (1995)</json:string>
<json:string>Parshotam et al. 1995</json:string>
<json:string>Jenkinson et al. 1991</json:string>
<json:string>Smith et al. (1996)</json:string>
<json:string>Parton et al. 1988</json:string>
<json:string>Powlson et al. 1998</json:string>
<json:string>Chertov & Komarov 1996</json:string>
<json:string>Jenkinson & Rayner 1977</json:string>
<json:string>Paustian et al. (1990)</json:string>
<json:string>McGill et al. (1981)</json:string>
<json:string>Smith et al. 1997a</json:string>
<json:string>de Ruiter et al. 1993a</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-P2RB3W79-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - environmental sciences</json:string>
<json:string>2 - ecology</json:string>
<json:string>2 - biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - ecology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - General Environmental Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Environmental Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Global and Planetary Change</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1046/j.1365-2486.1998.00193.x</json:string>
</doi>
<id>5519D0495A4D301E94B465FB4D3F2DEA6B368121</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1998-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
<title level="a" type="short">SOIL BIOTA IN MATHEMATICAL MODELS</title>
<author xml:id="author-0000">
<persName>
<forename type="first">PETE.</forename>
<surname>SMITH</surname>
</persName>
<affiliation>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">OLOF.</forename>
<surname>ANDRÉN</surname>
</persName>
<affiliation>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,
<address>
<country key="SE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">LIJBERT</forename>
<surname>BRUSSAARD</surname>
</persName>
<affiliation>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,
<address>
<country key="NL"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">MARK.</forename>
<surname>DANGERFIELD</surname>
</persName>
<affiliation>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">KLEMENS</forename>
<surname>EKSCHMITT</surname>
</persName>
<affiliation>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">PATRICK</forename>
<surname>LAVELLE</surname>
</persName>
<affiliation>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">KEVIN</forename>
<surname>TATE</surname>
</persName>
<affiliation>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</affiliation>
</author>
<idno type="istex">5519D0495A4D301E94B465FB4D3F2DEA6B368121</idno>
<idno type="ark">ark:/67375/WNG-P2RB3W79-4</idno>
<idno type="DOI">10.1046/j.1365-2486.1998.00193.x</idno>
<idno type="unit">GCB193</idno>
<idno type="toTypesetVersion">file:GCB.GCB193.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2486</idno>
<idno type="book-part-DOI">10.1111/gcb.1998.4.issue-7</idno>
<idno type="product">GCB</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="773">773</biblScope>
<biblScope unit="page" to="784">784</biblScope>
<biblScope unit="page-count">12 </biblScope>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1998-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">ecosystem</term>
<term xml:id="k2">global environmental change</term>
<term xml:id="k3">mathematical models</term>
<term xml:id="k4">
<hi rend="italic">s</hi>
oil biota</term>
<term xml:id="k5">soil organic matter network (SOMNET)</term>
<term xml:id="k6">soil organic matter</term>
</keywords>
<keywords rend="tocHeading1">
<term>Thematic Issue
Soil Biota and Global Change
Contents</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science, Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="GLOBAL CHANGE BIOLOGY">Global Change Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10007">
<doi origin="wiley">10.1111/gcb.1998.4.issue-7</doi>
<numberingGroup>
<numbering type="journalVolume" number="4">4</numbering>
<numbering type="journalIssue" number="7">7</numbering>
</numberingGroup>
<coverDate startDate="1998-10">1998-10</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0077300" status="forIssue">
<doi origin="wiley">10.1046/j.1365-2486.1998.00193.x</doi>
<idGroup>
<id type="unit" value="GCB193"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12 "></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Thematic Issue
Soil Biota and Global Change
Contents</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2004-03-04"></event>
<event type="publishedOnlineFinalForm" date="2004-03-04"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="773">773</numbering>
<numbering type="pageLast" number="784">784</numbering>
</numberingGroup>
<correspondenceTo> Dr Pete Smith, tel + 44/ (0)1582 763133, fax + 44/ (0)1582 760981, e‐mail
<email>pesmith@bbsrc.ac.uk</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB193.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>
<i>Received 26 June 1997;</i>
<i>revised version</i>
<i>received 17 August and</i>
<i>accepted 15 August 1997</i>
</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="1"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="86"></count>
<count type="wordTotal" number="0"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
<title type="shortAuthors">P. SMITH et al
<i>.</i>
</title>
<title type="short">SOIL BIOTA IN MATHEMATICAL MODELS</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>PETE.</givenNames>
<familyName>SMITH</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>OLOF.</givenNames>
<familyName>ANDRÉN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>LIJBERT</givenNames>
<familyName>BRUSSAARD</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>MARK.</givenNames>
<familyName>DANGERFIELD</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a5">
<personName>
<givenNames>KLEMENS</givenNames>
<familyName>EKSCHMITT</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a6">
<personName>
<givenNames>PATRICK</givenNames>
<familyName>LAVELLE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a7">
<personName>
<givenNames>KEVIN</givenNames>
<familyName>TATE</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="SE">
<unparsedAffiliation>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="NL">
<unparsedAffiliation>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="AU">
<unparsedAffiliation>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="DE">
<unparsedAffiliation>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="FR">
<unparsedAffiliation>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7">
<unparsedAffiliation>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">ecosystem</keyword>
<keyword xml:id="k2">global environmental change</keyword>
<keyword xml:id="k3">mathematical models</keyword>
<keyword xml:id="k4">
<i>s</i>
oil biota</keyword>
<keyword xml:id="k5">soil organic matter network (SOMNET)</keyword>
<keyword xml:id="k6">soil organic matter</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SOIL BIOTA IN MATHEMATICAL MODELS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</title>
</titleInfo>
<name type="personal">
<namePart type="given">PETE.</namePart>
<namePart type="family">SMITH</namePart>
<affiliation>Soil Science Department, IACR‐Rothamsted, Harpenden, Herts AL5 2JQ, UK,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">OLOF.</namePart>
<namePart type="family">ANDRÉN</namePart>
<affiliation>Soil Science Department, SLU, PO Box 7014, S‐750 07, Uppsala, Sweden,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LIJBERT</namePart>
<namePart type="family">BRUSSAARD</namePart>
<affiliation>Department of Terrestrial Ecology & Nature Conservation, Wageningen Agricultural University, Bornesteeg 69, 6708 PD, Wageningen, The Netherlands,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MARK.</namePart>
<namePart type="family">DANGERFIELD</namePart>
<affiliation>Key Centre for Biodiversity & Bioresources, School of Biological Sciences, Macquarie University, Syndey, NSW 2109, Australia,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KLEMENS</namePart>
<namePart type="family">EKSCHMITT</namePart>
<affiliation>Department of Animal Ecology, University of Giessen, Stephanstrasse 24, 35390 Giessen, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">PATRICK</namePart>
<namePart type="family">LAVELLE</namePart>
<affiliation>ORSTOM, Ecologie des Sol Tropicaux, 32 avenue Varagnat, F‐93143, Bondy cedex, France,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KEVIN</namePart>
<namePart type="family">TATE</namePart>
<affiliation>Landcare Research, Massey University, Private Bag 11052, Palmerston North, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Science, Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1998-10</dateIssued>
<edition>Received 26 June 1997; revised version received 17 August and accepted 15 August 1997</edition>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">0</extent>
<extent unit="tables">1</extent>
<extent unit="formulas">0</extent>
<extent unit="references">86</extent>
<extent unit="linksCrossRef">0</extent>
<extent unit="words">0</extent>
</physicalDescription>
<abstract lang="en">All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process‐orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process‐orientated and organism‐orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism‐orientated models at the ecosystem scale and larger is currently less feasible than is the use of process‐orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem‐level effects.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>ecosystem</topic>
<topic>global environmental change</topic>
<topic>mathematical models</topic>
<topic>soil biota</topic>
<topic>soil organic matter network (SOMNET)</topic>
<topic>soil organic matter</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>773</start>
<end>784</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">5519D0495A4D301E94B465FB4D3F2DEA6B368121</identifier>
<identifier type="ark">ark:/67375/WNG-P2RB3W79-4</identifier>
<identifier type="DOI">10.1046/j.1365-2486.1998.00193.x</identifier>
<identifier type="ArticleID">GCB193</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Science, Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/5519D0495A4D301E94B465FB4D3F2DEA6B368121/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001005 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001005 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5519D0495A4D301E94B465FB4D3F2DEA6B368121
   |texte=   Soil biota and global change at the ecosystem level: describing soil biota in mathematical models
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024