Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography

Identifieur interne : 000F39 ( Istex/Corpus ); précédent : 000F38; suivant : 000F40

A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography

Auteurs : Yi Zhang ; Yi-Fei Pu ; Wei-Hua Zhang ; Jin-Rong Hu ; Han Wang ; Yin-Jie Lei ; Ji-Liu Zhou

Source :

RBID : ISTEX:514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA

English descriptors

Abstract

Metal artifact reduction (MAR) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative MAR method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.

Url:
DOI: 10.1002/ima.22023

Links to Exploration step

ISTEX:514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
<author>
<name sortKey="Zhang, Yi" sort="Zhang, Yi" uniqKey="Zhang Y" first="Yi" last="Zhang">Yi Zhang</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: yzhang@scu.edu.cn</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pu, Yi Ei" sort="Pu, Yi Ei" uniqKey="Pu Y" first="Yi-Fei" last="Pu">Yi-Fei Pu</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wei Ua" sort="Zhang, Wei Ua" uniqKey="Zhang W" first="Wei-Hua" last="Zhang">Wei-Hua Zhang</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jin Ong" sort="Hu, Jin Ong" uniqKey="Hu J" first="Jin-Rong" last="Hu">Jin-Rong Hu</name>
<affiliation>
<mods:affiliation>School of Mathematics and Computer Engineering, Xihua University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Han" sort="Wang, Han" uniqKey="Wang H" first="Han" last="Wang">Han Wang</name>
<affiliation>
<mods:affiliation>Department of Physics, Ecole Normale Super Paris, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lei, Yin Ie" sort="Lei, Yin Ie" uniqKey="Lei Y" first="Yin-Jie" last="Lei">Yin-Jie Lei</name>
<affiliation>
<mods:affiliation>School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ji Iu" sort="Zhou, Ji Iu" uniqKey="Zhou J" first="Ji-Liu" last="Zhou">Ji-Liu Zhou</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/ima.22023</idno>
<idno type="url">https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F39</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
<author>
<name sortKey="Zhang, Yi" sort="Zhang, Yi" uniqKey="Zhang Y" first="Yi" last="Zhang">Yi Zhang</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: yzhang@scu.edu.cn</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pu, Yi Ei" sort="Pu, Yi Ei" uniqKey="Pu Y" first="Yi-Fei" last="Pu">Yi-Fei Pu</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wei Ua" sort="Zhang, Wei Ua" uniqKey="Zhang W" first="Wei-Hua" last="Zhang">Wei-Hua Zhang</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jin Ong" sort="Hu, Jin Ong" uniqKey="Hu J" first="Jin-Rong" last="Hu">Jin-Rong Hu</name>
<affiliation>
<mods:affiliation>School of Mathematics and Computer Engineering, Xihua University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Han" sort="Wang, Han" uniqKey="Wang H" first="Han" last="Wang">Han Wang</name>
<affiliation>
<mods:affiliation>Department of Physics, Ecole Normale Super Paris, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lei, Yin Ie" sort="Lei, Yin Ie" uniqKey="Lei Y" first="Yin-Jie" last="Lei">Yin-Jie Lei</name>
<affiliation>
<mods:affiliation>School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ji Iu" sort="Zhou, Ji Iu" uniqKey="Zhou J" first="Ji-Liu" last="Zhou">Ji-Liu Zhou</name>
<affiliation>
<mods:affiliation>College of Computer Science, Sichuan University, Chengdu, China</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">International Journal of Imaging Systems and Technology</title>
<title level="j" type="alt">INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY</title>
<idno type="ISSN">0899-9457</idno>
<idno type="eISSN">1098-1098</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="8">8</biblScope>
<biblScope unit="page-count">8</biblScope>
<date type="published" when="2012-11">2012-11</date>
</imprint>
<idno type="ISSN">0899-9457</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0899-9457</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abdoli</term>
<term>Accurate result</term>
<term>Algorithm</term>
<term>Artifact</term>
<term>Attenuation</term>
<term>Attenuation correction</term>
<term>Better performance</term>
<term>Cervical vertebra</term>
<term>Clinical cases</term>
<term>Clinical studies</term>
<term>Coherence</term>
<term>Coherence strength</term>
<term>Coherence transport</term>
<term>Computer science</term>
<term>Conventional methods</term>
<term>Dental amalgams</term>
<term>Euclidean distance</term>
<term>Excellent image quality</term>
<term>Grant number</term>
<term>Grant sponsor</term>
<term>Heavy metal artifact</term>
<term>Ieee</term>
<term>Ieee trans</term>
<term>Ieee trans nucl</term>
<term>Image inpainting</term>
<term>Image interpolation</term>
<term>Image quality</term>
<term>Imaging</term>
<term>Implant</term>
<term>Inpainting</term>
<term>Interpolation</term>
<term>Iterative</term>
<term>Iterative deblurring</term>
<term>Iterative reconstruction methods</term>
<term>Linear interpolation</term>
<term>Local coherence strength</term>
<term>Main steps</term>
<term>Metal artifact</term>
<term>Metal artifact reduction</term>
<term>Metal artifact suppression</term>
<term>Metal artifacts</term>
<term>Metal artifacts reduction</term>
<term>Metal artifacts reduction algorithm</term>
<term>Metal implants</term>
<term>Metal objects</term>
<term>Metal regions</term>
<term>Metal streak artifacts</term>
<term>Metallic inserts</term>
<term>Method cost</term>
<term>Method rois</term>
<term>Novel noniterative</term>
<term>Online issue</term>
<term>Original image</term>
<term>Original images</term>
<term>Original sinogram</term>
<term>Pelvic region</term>
<term>Phantom</term>
<term>Pixel</term>
<term>Projection</term>
<term>Projection completion</term>
<term>Projection data</term>
<term>Projection interpolation</term>
<term>Projection interpolation methods</term>
<term>Qualitative analyses</term>
<term>Quantitative analysis</term>
<term>Reconstructed</term>
<term>Reconstructed image</term>
<term>Reconstructed images</term>
<term>Reconstruction procedure</term>
<term>Relative difference</term>
<term>Sichuan university</term>
<term>Similar trend</term>
<term>Sinogram</term>
<term>Sinogram inpainting</term>
<term>Spline interpolation</term>
<term>Statistical analysis</term>
<term>Statistical results</term>
<term>Streak artifacts</term>
<term>Structure tensor</term>
<term>Theoretical values</term>
<term>Tomography</term>
<term>Traditional methods</term>
<term>Trans</term>
<term>Virtual sinogram</term>
<term>Visible metal artifact</term>
<term>Visual effect</term>
<term>Weights function</term>
<term>Wiley periodicals</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abdoli</term>
<term>Accurate result</term>
<term>Algorithm</term>
<term>Artifact</term>
<term>Attenuation</term>
<term>Attenuation correction</term>
<term>Better performance</term>
<term>Cervical vertebra</term>
<term>Clinical cases</term>
<term>Clinical studies</term>
<term>Coherence</term>
<term>Coherence strength</term>
<term>Coherence transport</term>
<term>Computer science</term>
<term>Conventional methods</term>
<term>Dental amalgams</term>
<term>Euclidean distance</term>
<term>Excellent image quality</term>
<term>Grant number</term>
<term>Grant sponsor</term>
<term>Heavy metal artifact</term>
<term>Ieee</term>
<term>Ieee trans</term>
<term>Ieee trans nucl</term>
<term>Image inpainting</term>
<term>Image interpolation</term>
<term>Image quality</term>
<term>Imaging</term>
<term>Implant</term>
<term>Inpainting</term>
<term>Interpolation</term>
<term>Iterative</term>
<term>Iterative deblurring</term>
<term>Iterative reconstruction methods</term>
<term>Linear interpolation</term>
<term>Local coherence strength</term>
<term>Main steps</term>
<term>Metal artifact</term>
<term>Metal artifact reduction</term>
<term>Metal artifact suppression</term>
<term>Metal artifacts</term>
<term>Metal artifacts reduction</term>
<term>Metal artifacts reduction algorithm</term>
<term>Metal implants</term>
<term>Metal objects</term>
<term>Metal regions</term>
<term>Metal streak artifacts</term>
<term>Metallic inserts</term>
<term>Method cost</term>
<term>Method rois</term>
<term>Novel noniterative</term>
<term>Online issue</term>
<term>Original image</term>
<term>Original images</term>
<term>Original sinogram</term>
<term>Pelvic region</term>
<term>Phantom</term>
<term>Pixel</term>
<term>Projection</term>
<term>Projection completion</term>
<term>Projection data</term>
<term>Projection interpolation</term>
<term>Projection interpolation methods</term>
<term>Qualitative analyses</term>
<term>Quantitative analysis</term>
<term>Reconstructed</term>
<term>Reconstructed image</term>
<term>Reconstructed images</term>
<term>Reconstruction procedure</term>
<term>Relative difference</term>
<term>Sichuan university</term>
<term>Similar trend</term>
<term>Sinogram</term>
<term>Sinogram inpainting</term>
<term>Spline interpolation</term>
<term>Statistical analysis</term>
<term>Statistical results</term>
<term>Streak artifacts</term>
<term>Structure tensor</term>
<term>Theoretical values</term>
<term>Tomography</term>
<term>Traditional methods</term>
<term>Trans</term>
<term>Virtual sinogram</term>
<term>Visible metal artifact</term>
<term>Visual effect</term>
<term>Weights function</term>
<term>Wiley periodicals</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Metal artifact reduction (MAR) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative MAR method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>artifact</json:string>
<json:string>sinogram</json:string>
<json:string>interpolation</json:string>
<json:string>pixel</json:string>
<json:string>metal artifacts</json:string>
<json:string>metal artifact reduction</json:string>
<json:string>algorithm</json:string>
<json:string>coherence transport</json:string>
<json:string>zhang</json:string>
<json:string>tomography</json:string>
<json:string>abdoli</json:string>
<json:string>reconstructed image</json:string>
<json:string>ieee</json:string>
<json:string>inpainting</json:string>
<json:string>coherence</json:string>
<json:string>attenuation</json:string>
<json:string>trans</json:string>
<json:string>iterative</json:string>
<json:string>projection data</json:string>
<json:string>phantom</json:string>
<json:string>projection interpolation methods</json:string>
<json:string>image quality</json:string>
<json:string>metal regions</json:string>
<json:string>original image</json:string>
<json:string>ieee trans</json:string>
<json:string>clinical cases</json:string>
<json:string>metal artifact</json:string>
<json:string>implant</json:string>
<json:string>original images</json:string>
<json:string>projection completion</json:string>
<json:string>projection interpolation</json:string>
<json:string>reconstruction procedure</json:string>
<json:string>streak artifacts</json:string>
<json:string>novel noniterative</json:string>
<json:string>statistical analysis</json:string>
<json:string>quantitative analysis</json:string>
<json:string>imaging</json:string>
<json:string>reconstructed</json:string>
<json:string>grant number</json:string>
<json:string>iterative deblurring</json:string>
<json:string>coherence strength</json:string>
<json:string>linear interpolation</json:string>
<json:string>metal artifacts reduction algorithm</json:string>
<json:string>wiley periodicals</json:string>
<json:string>metal artifacts reduction</json:string>
<json:string>computer science</json:string>
<json:string>conventional methods</json:string>
<json:string>accurate result</json:string>
<json:string>structure tensor</json:string>
<json:string>image interpolation</json:string>
<json:string>image inpainting</json:string>
<json:string>euclidean distance</json:string>
<json:string>local coherence strength</json:string>
<json:string>weights function</json:string>
<json:string>clinical studies</json:string>
<json:string>dental amalgams</json:string>
<json:string>iterative reconstruction methods</json:string>
<json:string>sichuan university</json:string>
<json:string>metal objects</json:string>
<json:string>spline interpolation</json:string>
<json:string>heavy metal artifact</json:string>
<json:string>excellent image quality</json:string>
<json:string>visible metal artifact</json:string>
<json:string>method rois</json:string>
<json:string>metallic inserts</json:string>
<json:string>sinogram inpainting</json:string>
<json:string>original sinogram</json:string>
<json:string>relative difference</json:string>
<json:string>statistical results</json:string>
<json:string>theoretical values</json:string>
<json:string>method cost</json:string>
<json:string>main steps</json:string>
<json:string>online issue</json:string>
<json:string>metal implants</json:string>
<json:string>pelvic region</json:string>
<json:string>cervical vertebra</json:string>
<json:string>visual effect</json:string>
<json:string>qualitative analyses</json:string>
<json:string>similar trend</json:string>
<json:string>metal artifact suppression</json:string>
<json:string>better performance</json:string>
<json:string>attenuation correction</json:string>
<json:string>metal streak artifacts</json:string>
<json:string>traditional methods</json:string>
<json:string>grant sponsor</json:string>
<json:string>ieee trans nucl</json:string>
<json:string>reconstructed images</json:string>
<json:string>virtual sinogram</json:string>
<json:string>projection</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Yi Zhang</name>
<affiliations>
<json:string>College of Computer Science, Sichuan University, Chengdu, China</json:string>
<json:string>E-mail: yzhang@scu.edu.cn</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yi‐Fei Pu</name>
<affiliations>
<json:string>College of Computer Science, Sichuan University, Chengdu, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wei‐Hua Zhang</name>
<affiliations>
<json:string>College of Computer Science, Sichuan University, Chengdu, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jin‐Rong Hu</name>
<affiliations>
<json:string>School of Mathematics and Computer Engineering, Xihua University, Chengdu, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Han Wang</name>
<affiliations>
<json:string>Department of Physics, Ecole Normale Super Paris, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yin‐Jie Lei</name>
<affiliations>
<json:string>School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ji‐Liu Zhou</name>
<affiliations>
<json:string>College of Computer Science, Sichuan University, Chengdu, China</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>metal artifact reduction</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>x‐ray computed tomography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>coherence transport</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fast marching method</value>
</json:item>
</subject>
<articleId>
<json:string>IMA22023</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-PQJWJ24L-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Metal artifact reduction (MAR) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative MAR method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.</abstract>
<qualityIndicators>
<score>8.428</score>
<pdfWordCount>4808</pdfWordCount>
<pdfCharCount>28448</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>135</abstractWordCount>
<abstractCharCount>965</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>International Journal of Imaging Systems and Technology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1098-1098</json:string>
</doi>
<issn>
<json:string>0899-9457</json:string>
</issn>
<eissn>
<json:string>1098-1098</json:string>
</eissn>
<publisherId>
<json:string>IMA</json:string>
</publisherId>
<volume>22</volume>
<issue>4</issue>
<pages>
<first>1</first>
<last>8</last>
<total>8</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012-11-09</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Wiley Periodicals, Inc.</json:string>
<json:string>China School of Mathematics and Computer</json:string>
<json:string>University of Western Australia, Crawley, Australia</json:string>
<json:string>Pishva Trading Co., Tehran, Iran</json:string>
<json:string>Xihua University</json:string>
<json:string>Wiley Periodicals, Inc</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Our</json:string>
<json:string>Hua Zhang</json:string>
<json:string>Yi Zhang</json:string>
<json:string>Zhao Figure</json:string>
<json:string>The</json:string>
<json:string>C. Phantom</json:string>
<json:string>Jie Lei</json:string>
<json:string>Han Wang</json:string>
<json:string>Clinical</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Erlangen</json:string>
<json:string>China</json:string>
<json:string>Chengdu</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Kalender et al.</json:string>
<json:string>Watzke and Kalender, 2004</json:string>
<json:string>Zhang et al.</json:string>
<json:string>Yu et al.</json:string>
<json:string>De Man et al., 2000</json:string>
<json:string>Crawford, 1986</json:string>
<json:string>Zhao et al.</json:string>
<json:string>lðxÞ ¼ if k1 ðxÞ ¼ k2 ðxÞ; 1; 1 þ je À1 ðk1 ðxÞÀk2 ðxÞÞ2 ; otherwise: ð6Þ More details about this method are found in (Weickert, 1998</json:string>
<json:string>Duan et al., 2008</json:string>
<json:string>Lemmens et al., 2009</json:string>
<json:string>Wei et al., 2004</json:string>
<json:string>Bornemann and Marz, 2007</json:string>
<json:string>Sethian, 1999</json:string>
<json:string>Gu et al., 2006b</json:string>
<json:string>Soille, 1991</json:string>
<json:string>Haramati et al., 1994</json:string>
<json:string>Mahnken et al., 2003</json:string>
<json:string>Kalender et al., 1987</json:string>
<json:string>Lewitt and Bates, 1978</json:string>
<json:string>Wei et al.</json:string>
<json:string>Wang et al., 1996</json:string>
<json:string>Ebraheim et al., 1990</json:string>
<json:string>Zhang et al., 2011a,b</json:string>
<json:string>Weickert, 1998, 1999</json:string>
<json:string>Abdoli et al., 2010b</json:string>
<json:string>Mahnken et al.</json:string>
<json:string>Veldkamp et al. (2010)</json:string>
<json:string>Tsitsiklis, 1995</json:string>
<json:string>De Man et al., 1999</json:string>
<json:string>Duan et al.</json:string>
<json:string>Gu et al. (2006a)</json:string>
<json:string>Yu et al., 2009</json:string>
<json:string>Weickert, 1999</json:string>
<json:string>Bal and Spies 2006</json:string>
<json:string>Gu et al.</json:string>
<json:string>Abdoli et al., 2010a</json:string>
<json:string>Abdoli et al., 2011</json:string>
<json:string>Abdoli et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-PQJWJ24L-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - optics</json:string>
<json:string>2 - imaging science & photographic technology</json:string>
<json:string>2 - engineering, electrical & electronic</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - information & communication technologies</json:string>
<json:string>3 - artificial intelligence & image processing</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Electrical and Electronic Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Computer Science</json:string>
<json:string>3 - Computer Vision and Pattern Recognition</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Computer Science</json:string>
<json:string>3 - Software</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Electronic, Optical and Magnetic Materials</json:string>
</scopus>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/ima.22023</json:string>
</doi>
<id>514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright © 2012 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2012-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Yi</forename>
<surname>Zhang</surname>
</persName>
<affiliation>
<orgName>College of Computer Science</orgName>
<orgName>Sichuan University</orgName>
<address>
<settlement type="city">Chengdu</settlement>
<country key="CN">China</country>
</address>
</affiliation>
<affiliation>Correspondence to: Yi Zhang; e‐mail: yzhang@scu.edu.cn</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Yi‐Fei</forename>
<surname>Pu</surname>
</persName>
<affiliation>
<orgName>College of Computer Science</orgName>
<orgName>Sichuan University</orgName>
<address>
<settlement type="city">Chengdu</settlement>
<country key="CN">China</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Wei‐Hua</forename>
<surname>Zhang</surname>
</persName>
<affiliation>
<orgName>College of Computer Science</orgName>
<orgName>Sichuan University</orgName>
<address>
<settlement type="city">Chengdu</settlement>
<country key="CN">China</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Jin‐Rong</forename>
<surname>Hu</surname>
</persName>
<affiliation>
<orgName>School of Mathematics and Computer Engineering</orgName>
<orgName>Xihua University</orgName>
<address>
<settlement type="city">Chengdu</settlement>
<country key="CN">China</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Han</forename>
<surname>Wang</surname>
</persName>
<affiliation>
<orgName>Department of Physics</orgName>
<orgName>Ecole Normale Super Paris</orgName>
<address>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Yin‐Jie</forename>
<surname>Lei</surname>
</persName>
<affiliation>
<orgName>School of Computer Science and Software Engineering</orgName>
<orgName>The University of Western Australia</orgName>
<address>
<settlement type="city">Perth</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Ji‐Liu</forename>
<surname>Zhou</surname>
</persName>
<affiliation>
<orgName>College of Computer Science</orgName>
<orgName>Sichuan University</orgName>
<address>
<settlement type="city">Chengdu</settlement>
<country key="CN">China</country>
</address>
</affiliation>
</author>
<idno type="istex">514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA</idno>
<idno type="ark">ark:/67375/WNG-PQJWJ24L-9</idno>
<idno type="DOI">10.1002/ima.22023</idno>
<idno type="unit">IMA22023</idno>
<idno type="toTypesetVersion">file:IMA.IMA22023.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">International Journal of Imaging Systems and Technology</title>
<title level="j" type="alt">INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY</title>
<idno type="pISSN">0899-9457</idno>
<idno type="eISSN">1098-1098</idno>
<idno type="book-DOI">10.1002/(ISSN)1098-1098</idno>
<idno type="book-part-DOI">10.1002/ima.v22.4</idno>
<idno type="product">IMA</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="8">8</biblScope>
<biblScope unit="page-count">8</biblScope>
<date type="published" when="2012-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<head>ABSTRACT</head>
<p>Metal artifact reduction (
<hi rend="fc">MAR</hi>
) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative
<hi rend="fc">MAR</hi>
method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="ima22023-kwd-0001">metal artifact reduction</term>
<term xml:id="ima22023-kwd-0002">x‐ray computed tomography</term>
<term xml:id="ima22023-kwd-0003">coherence transport</term>
<term xml:id="ima22023-kwd-0004">fast marching method</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="ima22023">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)1098-1098</doi>
<issn type="print">0899-9457</issn>
<issn type="electronic">1098-1098</issn>
<idGroup>
<id type="product" value="IMA"></id>
</idGroup>
<titleGroup>
<title type="main" sort="INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY">International Journal of Imaging Systems and Technology</title>
<title type="short">Int. J. Imaging Syst. Technol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/ima.v22.4</doi>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2012-11">November 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="10" type="article" status="forIssue">
<doi>10.1002/ima.22023</doi>
<idGroup>
<id type="unit" value="IMA22023"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-06-19"></event>
<event type="manuscriptRevised" date="2012-08-04"></event>
<event type="manuscriptAccepted" date="2012-08-27"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2012-11-09"></event>
<event type="publishedOnlineFinalForm" date="2012-11-01"></event>
<event type="firstOnline" date="2012-11-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-14"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1</numbering>
<numbering type="pageLast">8</numbering>
</numberingGroup>
<correspondenceTo>
<i>Correspondence to</i>
: Yi Zhang; e‐mail:
<email>yzhang@scu.edu.cn</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:IMA.IMA22023.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
</titleGroup>
<creators>
<creator affiliationRef="#ima22023-aff-0001" corresponding="yes" creatorRole="author" xml:id="ima22023-cr-0001">
<personName>
<givenNames>Yi</givenNames>
<familyName>Zhang</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0001" creatorRole="author" xml:id="ima22023-cr-0002">
<personName>
<givenNames>Yi‐Fei</givenNames>
<familyName>Pu</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0001" creatorRole="author" xml:id="ima22023-cr-0003">
<personName>
<givenNames>Wei‐Hua</givenNames>
<familyName>Zhang</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0002" creatorRole="author" xml:id="ima22023-cr-0004">
<personName>
<givenNames>Jin‐Rong</givenNames>
<familyName>Hu</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0003" creatorRole="author" xml:id="ima22023-cr-0005">
<personName>
<givenNames>Han</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0004" creatorRole="author" xml:id="ima22023-cr-0006">
<personName>
<givenNames>Yin‐Jie</givenNames>
<familyName>Lei</familyName>
</personName>
</creator>
<creator affiliationRef="#ima22023-aff-0001" creatorRole="author" xml:id="ima22023-cr-0007">
<personName>
<givenNames>Ji‐Liu</givenNames>
<familyName>Zhou</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="CN" type="organization" xml:id="ima22023-aff-0001">
<orgDiv>College of Computer Science</orgDiv>
<orgName>Sichuan University</orgName>
<address>
<city>Chengdu</city>
<country>China</country>
</address>
</affiliation>
<affiliation countryCode="CN" type="organization" xml:id="ima22023-aff-0002">
<orgDiv>School of Mathematics and Computer Engineering</orgDiv>
<orgName>Xihua University</orgName>
<address>
<city>Chengdu</city>
<country>China</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="ima22023-aff-0003">
<orgDiv>Department of Physics</orgDiv>
<orgName>Ecole Normale Super Paris</orgName>
<address>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="ima22023-aff-0004">
<orgDiv>School of Computer Science and Software Engineering</orgDiv>
<orgName>The University of Western Australia</orgName>
<address>
<city>Perth</city>
<country>Australia</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="ima22023-kwd-0001">metal artifact reduction</keyword>
<keyword xml:id="ima22023-kwd-0002">x‐ray computed tomography</keyword>
<keyword xml:id="ima22023-kwd-0003">coherence transport</keyword>
<keyword xml:id="ima22023-kwd-0004">fast marching method</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Natural Science Foundation of China</fundingAgency>
<fundingNumber>60972131</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Foundation of Sichuan University Early Career Researcher Award</fundingAgency>
<fundingNumber>2012SCU11036</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main">
<title type="main">ABSTRACT</title>
<p>Metal artifact reduction (
<fc>MAR</fc>
) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative
<fc>MAR</fc>
method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>College of Computer Science, Sichuan University, Chengdu, China</affiliation>
<affiliation>E-mail: yzhang@scu.edu.cn</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi‐Fei</namePart>
<namePart type="family">Pu</namePart>
<affiliation>College of Computer Science, Sichuan University, Chengdu, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei‐Hua</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>College of Computer Science, Sichuan University, Chengdu, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin‐Rong</namePart>
<namePart type="family">Hu</namePart>
<affiliation>School of Mathematics and Computer Engineering, Xihua University, Chengdu, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Physics, Ecole Normale Super Paris, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yin‐Jie</namePart>
<namePart type="family">Lei</namePart>
<affiliation>School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji‐Liu</namePart>
<namePart type="family">Zhou</namePart>
<affiliation>College of Computer Science, Sichuan University, Chengdu, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-11</dateIssued>
<dateCreated encoding="w3cdtf">2012-11-09</dateCreated>
<dateCaptured encoding="w3cdtf">2012-06-19</dateCaptured>
<dateValid encoding="w3cdtf">2012-08-27</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>Metal artifact reduction (MAR) is still a challenging problem in current computed tomography reconstruction. Traditional methods usually use the unaffected projection data in the same degree to interpolate contaminated positions in the bins. The continuality and smoothness features become hard to fulfill. In this article, we propose a novel noniterative MAR method that uses coherence transport with fast marching. Two‐dimensional information, including the neighboring bins, is used to inpaint the uncorrected sinogram with a special form of weighted average according to a sequence calculated by the fast marching method. The results of the experiments and the quantitative analysis demonstrate that the proposed method can effectively suppress the artifacts caused by metal with a high‐attenuation coefficient. Compared with linear interpolation, the proposed method can introduce less streak artifacts and obtain more accurate structure information of organs.</abstract>
<note type="funding">National Natural Science Foundation of China - No. 60972131; </note>
<note type="funding">Foundation of Sichuan University Early Career Researcher Award - No. 2012SCU11036; </note>
<subject>
<genre>keywords</genre>
<topic>metal artifact reduction</topic>
<topic>x‐ray computed tomography</topic>
<topic>coherence transport</topic>
<topic>fast marching method</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Imaging Systems and Technology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Imaging Syst. Technol.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0899-9457</identifier>
<identifier type="eISSN">1098-1098</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-1098</identifier>
<identifier type="PublisherID">IMA</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>8</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA</identifier>
<identifier type="ark">ark:/67375/WNG-PQJWJ24L-9</identifier>
<identifier type="DOI">10.1002/ima.22023</identifier>
<identifier type="ArticleID">IMA22023</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:514BA890D6BACBAC17F73EB63EDF3A6F8D9347AA
   |texte=   A Novel Noniterative Metal Artifact Reduction Method Using Coherence Transport with Fast Marching in Computed Tomography
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024