Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental determination of critical flux in cross-flow microfiltration

Identifieur interne : 000B51 ( Istex/Corpus ); précédent : 000B50; suivant : 000B52

Experimental determination of critical flux in cross-flow microfiltration

Auteurs : D. Y Kwon ; S. Vigneswaran ; A. G Fane ; R. Ben Aim

Source :

RBID : ISTEX:3D89BF550271A9BD51461CED12C3282FD947B207

English descriptors

Abstract

Abstract: In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.

Url:
DOI: 10.1016/S1383-5866(99)00088-X

Links to Exploration step

ISTEX:3D89BF550271A9BD51461CED12C3282FD947B207

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental determination of critical flux in cross-flow microfiltration</title>
<author>
<name sortKey="Kwon, D Y" sort="Kwon, D Y" uniqKey="Kwon D" first="D. Y" last="Kwon">D. Y Kwon</name>
<affiliation>
<mods:affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vigneswaran, S" sort="Vigneswaran, S" uniqKey="Vigneswaran S" first="S" last="Vigneswaran">S. Vigneswaran</name>
<affiliation>
<mods:affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fane, A G" sort="Fane, A G" uniqKey="Fane A" first="A. G" last="Fane">A. G Fane</name>
<affiliation>
<mods:affiliation>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aim, R Ben" sort="Aim, R Ben" uniqKey="Aim R" first="R. Ben" last="Aim">R. Ben Aim</name>
<affiliation>
<mods:affiliation>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3D89BF550271A9BD51461CED12C3282FD947B207</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S1383-5866(99)00088-X</idno>
<idno type="url">https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B51</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Experimental determination of critical flux in cross-flow microfiltration</title>
<author>
<name sortKey="Kwon, D Y" sort="Kwon, D Y" uniqKey="Kwon D" first="D. Y" last="Kwon">D. Y Kwon</name>
<affiliation>
<mods:affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vigneswaran, S" sort="Vigneswaran, S" uniqKey="Vigneswaran S" first="S" last="Vigneswaran">S. Vigneswaran</name>
<affiliation>
<mods:affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fane, A G" sort="Fane, A G" uniqKey="Fane A" first="A. G" last="Fane">A. G Fane</name>
<affiliation>
<mods:affiliation>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aim, R Ben" sort="Aim, R Ben" uniqKey="Aim R" first="R. Ben" last="Aim">R. Ben Aim</name>
<affiliation>
<mods:affiliation>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Separation and Purification Technology</title>
<title level="j" type="abbrev">SEPPUR</title>
<idno type="ISSN">1383-5866</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="169">169</biblScope>
<biblScope unit="page" to="181">181</biblScope>
</imprint>
<idno type="ISSN">1383-5866</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1383-5866</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Adhesion rate</term>
<term>Average value</term>
<term>Cfmf</term>
<term>Cfmf cell</term>
<term>Clean water</term>
<term>Critical flux</term>
<term>Cross-flow microfiltration</term>
<term>Deposit layer</term>
<term>Deposition</term>
<term>Different particle sizes</term>
<term>Different pore sizes</term>
<term>Different sizes</term>
<term>Direct observation</term>
<term>Drag force</term>
<term>Elsevier science</term>
<term>Experimental results</term>
<term>Feed concentration</term>
<term>Feed concentrations</term>
<term>Feed suspension</term>
<term>Feed tank</term>
<term>Fouling</term>
<term>Fouling effect</term>
<term>High concentration</term>
<term>Higher concentration</term>
<term>Influent concentration</term>
<term>Intrinsic resistance</term>
<term>Ionic strength</term>
<term>Larger pore size</term>
<term>Latex</term>
<term>Latex particles</term>
<term>Linear regression</term>
<term>Logarithmic regression</term>
<term>Lower concentration</term>
<term>Ltration</term>
<term>Mass balance</term>
<term>Membrane</term>
<term>Membrane fouling</term>
<term>Membrane performance</term>
<term>Membrane pore size</term>
<term>Membrane pores</term>
<term>Membrane surface</term>
<term>Negligible membrane fouling</term>
<term>Operational mode</term>
<term>Optimal position</term>
<term>Other hand</term>
<term>Particle</term>
<term>Particle adhesion rate</term>
<term>Particle concentration</term>
<term>Particle deposition</term>
<term>Particle deposition rate</term>
<term>Particle mass balance</term>
<term>Particle size</term>
<term>Pore</term>
<term>Pore size</term>
<term>Potassium chloride</term>
<term>Research strength</term>
<term>Smaller particles</term>
<term>Surface charge</term>
<term>Technology sydney</term>
<term>Temporary deposition</term>
<term>Test suspensions</term>
<term>Transmembrane pressure</term>
<term>Uxes</term>
<term>Waste management</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adhesion</term>
<term>Adhesion rate</term>
<term>Average value</term>
<term>Cfmf</term>
<term>Cfmf cell</term>
<term>Clean water</term>
<term>Deposit layer</term>
<term>Deposition</term>
<term>Different particle sizes</term>
<term>Different pore sizes</term>
<term>Different sizes</term>
<term>Direct observation</term>
<term>Drag force</term>
<term>Elsevier science</term>
<term>Experimental results</term>
<term>Feed concentration</term>
<term>Feed concentrations</term>
<term>Feed suspension</term>
<term>Feed tank</term>
<term>Fouling</term>
<term>Fouling effect</term>
<term>High concentration</term>
<term>Higher concentration</term>
<term>Intrinsic resistance</term>
<term>Ionic strength</term>
<term>Larger pore size</term>
<term>Latex</term>
<term>Latex particles</term>
<term>Linear regression</term>
<term>Logarithmic regression</term>
<term>Lower concentration</term>
<term>Ltration</term>
<term>Mass balance</term>
<term>Membrane</term>
<term>Membrane fouling</term>
<term>Membrane performance</term>
<term>Membrane pore size</term>
<term>Membrane pores</term>
<term>Membrane surface</term>
<term>Negligible membrane fouling</term>
<term>Operational mode</term>
<term>Optimal position</term>
<term>Other hand</term>
<term>Particle</term>
<term>Particle adhesion rate</term>
<term>Particle concentration</term>
<term>Particle deposition</term>
<term>Particle deposition rate</term>
<term>Particle mass balance</term>
<term>Particle size</term>
<term>Pore</term>
<term>Pore size</term>
<term>Potassium chloride</term>
<term>Research strength</term>
<term>Smaller particles</term>
<term>Surface charge</term>
<term>Technology sydney</term>
<term>Temporary deposition</term>
<term>Test suspensions</term>
<term>Transmembrane pressure</term>
<term>Uxes</term>
<term>Waste management</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>particle deposition</json:string>
<json:string>particle size</json:string>
<json:string>uxes</json:string>
<json:string>ltration</json:string>
<json:string>membrane pore size</json:string>
<json:string>ionic strength</json:string>
<json:string>membrane surface</json:string>
<json:string>cfmf</json:string>
<json:string>pore</json:string>
<json:string>membrane</json:string>
<json:string>membrane fouling</json:string>
<json:string>membrane pores</json:string>
<json:string>mass balance</json:string>
<json:string>feed tank</json:string>
<json:string>feed concentration</json:string>
<json:string>larger pore size</json:string>
<json:string>latex particles</json:string>
<json:string>deposition</json:string>
<json:string>fouling effect</json:string>
<json:string>different particle sizes</json:string>
<json:string>particle deposition rate</json:string>
<json:string>different sizes</json:string>
<json:string>particle adhesion rate</json:string>
<json:string>other hand</json:string>
<json:string>operational mode</json:string>
<json:string>clean water</json:string>
<json:string>linear regression</json:string>
<json:string>particle concentration</json:string>
<json:string>latex</json:string>
<json:string>fouling</json:string>
<json:string>particle</json:string>
<json:string>adhesion</json:string>
<json:string>membrane performance</json:string>
<json:string>research strength</json:string>
<json:string>surface charge</json:string>
<json:string>potassium chloride</json:string>
<json:string>particle mass balance</json:string>
<json:string>negligible membrane fouling</json:string>
<json:string>elsevier science</json:string>
<json:string>test suspensions</json:string>
<json:string>average value</json:string>
<json:string>transmembrane pressure</json:string>
<json:string>adhesion rate</json:string>
<json:string>technology sydney</json:string>
<json:string>cfmf cell</json:string>
<json:string>feed concentrations</json:string>
<json:string>deposit layer</json:string>
<json:string>logarithmic regression</json:string>
<json:string>intrinsic resistance</json:string>
<json:string>experimental results</json:string>
<json:string>waste management</json:string>
<json:string>direct observation</json:string>
<json:string>temporary deposition</json:string>
<json:string>high concentration</json:string>
<json:string>pore size</json:string>
<json:string>drag force</json:string>
<json:string>different pore sizes</json:string>
<json:string>higher concentration</json:string>
<json:string>lower concentration</json:string>
<json:string>optimal position</json:string>
<json:string>smaller particles</json:string>
<json:string>feed suspension</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>D.Y Kwon</name>
<affiliations>
<json:string>E-mail: daeyoung.kwon@eng.uts.edu.au</json:string>
<json:string>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>S Vigneswaran</name>
<affiliations>
<json:string>E-mail: daeyoung.kwon@eng.uts.edu.au</json:string>
<json:string>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>A.G Fane</name>
<affiliations>
<json:string>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>R.Ben Aim</name>
<affiliations>
<json:string>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Critical flux</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cross-flow microfiltration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Particle size</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Membrane pore size</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Influent concentration</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-2F8HZ0JX-D</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.</abstract>
<qualityIndicators>
<score>7.455</score>
<pdfWordCount>4027</pdfWordCount>
<pdfCharCount>24223</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>536 x 674 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>119</abstractWordCount>
<abstractCharCount>775</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Experimental determination of critical flux in cross-flow microfiltration</title>
<pii>
<json:string>S1383-5866(99)00088-X</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Separation and Purification Technology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>1383-5866</json:string>
</issn>
<pii>
<json:string>S1383-5866(00)X0024-X</json:string>
</pii>
<volume>19</volume>
<issue>3</issue>
<pages>
<first>169</first>
<last>181</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Technology Sydney</json:string>
<json:string>Environmental Hydraulics, Hong Kong</json:string>
<json:string>France Received</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Complexe</json:string>
<json:string>E.S. Tarleton</json:string>
<json:string>H.G.L. Coster</json:string>
<json:string>A.G. Fane</json:string>
<json:string>B.B. Gupta</json:string>
<json:string>P. Aimar</json:string>
<json:string>S.C. Ju</json:string>
<json:string>W.M. Lu</json:string>
<json:string>J.A. Howell</json:string>
<json:string>S. Vigneswaran</json:string>
<json:string>R.J. Wakeman</json:string>
<json:string>J. Membr</json:string>
<json:string>R.W. Field</json:string>
<json:string>M.H. Lokjine</json:string>
<json:string>J. Water</json:string>
<json:string>H. Li</json:string>
<json:string>D.Y. Kwon</json:string>
<json:string>D. Wu</json:string>
<json:string>P. Bacchin</json:string>
<json:string>V. Sanchez</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Wales</json:string>
<json:string>Toulouse</json:string>
<json:string>Sydney</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[7,8]</json:string>
<json:string>Field et al. [3]</json:string>
<json:string>[11]</json:string>
<json:string>[1]</json:string>
<json:string>[9,10]</json:string>
<json:string>D.Y. Kwon et al.</json:string>
<json:string>Bacchin et al. [5]</json:string>
<json:string>[2]</json:string>
<json:string>Baccin et al. [6]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-2F8HZ0JX-D</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - engineering</json:string>
<json:string>3 - chemical engineering</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Filtration and Separation</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Analytical Chemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - geophysique externe</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S1383-5866(99)00088-X</json:string>
</doi>
<id>3D89BF550271A9BD51461CED12C3282FD947B207</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Experimental determination of critical flux in cross-flow microfiltration</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science B.V.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Experimental set-up.</note>
<note type="content">Fig. 2: Variations of TMP and feed concentrations with time (filled symbols represent TMP and empty ones represent feed concentration; units of the corresponding permeate flux values shown at the bottom of each figure is l/m2 per h).</note>
<note type="content">Fig. 3: TMP versus permeate flux.</note>
<note type="content">Fig. 4: Feed concentration at 0 permeate flux.</note>
<note type="content">Fig. 5: Variation of deposited mass with time.</note>
<note type="content">Fig. 6: Particle deposition rate with permeate flux for different particle sizes.</note>
<note type="content">Fig. 7: Effect of particle size on both critical fluxes.</note>
<note type="content">Fig. 8: Effect of membrane pore size on both critical fluxes.</note>
<note type="content">Fig. 9: Effect of membrane pore size on TMP increase at various permeate fluxes.</note>
<note type="content">Fig. 10: Effect of membrane pore size on TMP(t)/TMP(0) increase at 150 l/m2 per h.</note>
<note type="content">Fig. 11: Diagram of deposited particles onto smaller and larger pore size of membranes.</note>
<note type="content">Fig. 12: Effect of influent concentration on both critical fluxes.</note>
<note type="content">Fig. 13: Effect of influent concentration on TMP(t)/TMP(0) increase at condition over critical flux.</note>
<note type="content">Fig. 14: Diagram of different mechanisms of particle deposition at low and high influent concentration [2].</note>
<note type="content">Fig. 15: Effect of ionic strength on both critical fluxes.</note>
<note type="content">Fig. 16: Diagram of layers formed by particles at lower and higher ionic strength.</note>
<note type="content">Table 1: Adhesion ratea</note>
<note type="content">Table 2: Intrinsic resistance of membranea</note>
<note type="content">Table 3: Logarithmic regression resulta</note>
<note type="content">Table 4: Linear regression resulta</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Experimental determination of critical flux in cross-flow microfiltration</title>
<author xml:id="author-0000">
<persName>
<forename type="first">D.Y</forename>
<surname>Kwon</surname>
</persName>
<email>daeyoung.kwon@eng.uts.edu.au</email>
<affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">S</forename>
<surname>Vigneswaran</surname>
</persName>
<email>daeyoung.kwon@eng.uts.edu.au</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +61-2-95142653; fax: +61-2-95142633</p>
</note>
<affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">A.G</forename>
<surname>Fane</surname>
</persName>
<affiliation>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">R.Ben</forename>
<surname>Aim</surname>
</persName>
<affiliation>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</affiliation>
</author>
<idno type="istex">3D89BF550271A9BD51461CED12C3282FD947B207</idno>
<idno type="DOI">10.1016/S1383-5866(99)00088-X</idno>
<idno type="PII">S1383-5866(99)00088-X</idno>
</analytic>
<monogr>
<title level="j">Separation and Purification Technology</title>
<title level="j" type="abbrev">SEPPUR</title>
<idno type="pISSN">1383-5866</idno>
<idno type="PII">S1383-5866(00)X0024-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="169">169</biblScope>
<biblScope unit="page" to="181">181</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Critical flux</term>
</item>
<item>
<term>Cross-flow microfiltration</term>
</item>
<item>
<term>Particle size</term>
</item>
<item>
<term>Membrane pore size</term>
</item>
<item>
<term>Influent concentration</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-12-05">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2ab" NDATA="IMAGE" name="gr2ab"></istex:entity>
<istex:entity SYSTEM="gr2cd" NDATA="IMAGE" name="gr2cd"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>SEPPUR</jid>
<aid>1233</aid>
<ce:pii>S1383-5866(99)00088-X</ce:pii>
<ce:doi>10.1016/S1383-5866(99)00088-X</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Experimental determination of critical flux in cross-flow microfiltration</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>D.Y</ce:given-name>
<ce:surname>Kwon</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:e-address>daeyoung.kwon@eng.uts.edu.au</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>S</ce:given-name>
<ce:surname>Vigneswaran</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>s.vigneswaran@uts.edu.au</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>A.G</ce:given-name>
<ce:surname>Fane</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R.Ben</ce:given-name>
<ce:surname>Aim</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +61-2-95142653; fax: +61-2-95142633</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="25" month="9" year="1998"></ce:date-received>
<ce:date-revised day="5" month="12" year="1999"></ce:date-revised>
<ce:date-accepted day="6" month="12" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Critical flux</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Cross-flow microfiltration</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Particle size</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Membrane pore size</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Influent concentration</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Experimental determination of critical flux in cross-flow microfiltration</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Experimental determination of critical flux in cross-flow microfiltration</title>
</titleInfo>
<name type="personal">
<namePart type="given">D.Y</namePart>
<namePart type="family">Kwon</namePart>
<affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</affiliation>
<affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Vigneswaran</namePart>
<affiliation>E-mail: daeyoung.kwon@eng.uts.edu.au</affiliation>
<affiliation>Group of Environmental Engineering and Key Research Strength on Water and Waste Management, Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia</affiliation>
<description>Corresponding author. Tel.: +61-2-95142653; fax: +61-2-95142633</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.G</namePart>
<namePart type="family">Fane</namePart>
<affiliation>UNESCO Centre for Membrane Science and Technology, University of New South Wales, Sydney, 2052, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.Ben</namePart>
<namePart type="family">Aim</namePart>
<affiliation>INSA Genie des Procedes Industriels Complexe Scientifique de Rangueil, 31077, Toulouse Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateModified encoding="w3cdtf">1999-12-05</dateModified>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: In this study, two definitions of critical flux were introduced based on the cross-flow microfiltration (CFMF) experiments conducted under an operational mode of constant permeate flux. The critical flux based on mass balance was calculated from the rate of particle deposition at a certain permeate flux. Below the critical flux, there will be no particle deposition on the membranes. The other was defined on the basis of the increase in transmembrane pressure (TMP). The critical flux based on the TMP increase is the flux below which membrane fouling does not occur. The critical flux based on both definitions was evaluated from experiments with different particle size, membrane pore size, influent concentration and ionic strength of the influent suspension.</abstract>
<note type="content">Fig. 1: Experimental set-up.</note>
<note type="content">Fig. 2: Variations of TMP and feed concentrations with time (filled symbols represent TMP and empty ones represent feed concentration; units of the corresponding permeate flux values shown at the bottom of each figure is l/m2 per h).</note>
<note type="content">Fig. 3: TMP versus permeate flux.</note>
<note type="content">Fig. 4: Feed concentration at 0 permeate flux.</note>
<note type="content">Fig. 5: Variation of deposited mass with time.</note>
<note type="content">Fig. 6: Particle deposition rate with permeate flux for different particle sizes.</note>
<note type="content">Fig. 7: Effect of particle size on both critical fluxes.</note>
<note type="content">Fig. 8: Effect of membrane pore size on both critical fluxes.</note>
<note type="content">Fig. 9: Effect of membrane pore size on TMP increase at various permeate fluxes.</note>
<note type="content">Fig. 10: Effect of membrane pore size on TMP(t)/TMP(0) increase at 150 l/m2 per h.</note>
<note type="content">Fig. 11: Diagram of deposited particles onto smaller and larger pore size of membranes.</note>
<note type="content">Fig. 12: Effect of influent concentration on both critical fluxes.</note>
<note type="content">Fig. 13: Effect of influent concentration on TMP(t)/TMP(0) increase at condition over critical flux.</note>
<note type="content">Fig. 14: Diagram of different mechanisms of particle deposition at low and high influent concentration [2].</note>
<note type="content">Fig. 15: Effect of ionic strength on both critical fluxes.</note>
<note type="content">Fig. 16: Diagram of layers formed by particles at lower and higher ionic strength.</note>
<note type="content">Table 1: Adhesion ratea</note>
<note type="content">Table 2: Intrinsic resistance of membranea</note>
<note type="content">Table 3: Logarithmic regression resulta</note>
<note type="content">Table 4: Linear regression resulta</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Critical flux</topic>
<topic>Cross-flow microfiltration</topic>
<topic>Particle size</topic>
<topic>Membrane pore size</topic>
<topic>Influent concentration</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Separation and Purification Technology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SEPPUR</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20000701</dateIssued>
</originInfo>
<identifier type="ISSN">1383-5866</identifier>
<identifier type="PII">S1383-5866(00)X0024-X</identifier>
<part>
<date>20000701</date>
<detail type="volume">
<number>19</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>157</start>
<end>242</end>
</extent>
<extent unit="pages">
<start>169</start>
<end>181</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">3D89BF550271A9BD51461CED12C3282FD947B207</identifier>
<identifier type="ark">ark:/67375/6H6-2F8HZ0JX-D</identifier>
<identifier type="DOI">10.1016/S1383-5866(99)00088-X</identifier>
<identifier type="PII">S1383-5866(99)00088-X</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/3D89BF550271A9BD51461CED12C3282FD947B207/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3D89BF550271A9BD51461CED12C3282FD947B207
   |texte=   Experimental determination of critical flux in cross-flow microfiltration
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024