Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies

Identifieur interne : 000856 ( Istex/Corpus ); précédent : 000855; suivant : 000857

Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies

Auteurs : A. Charbonnier ; C. Combet ; M. Daniel ; S. Funk ; J. A. Hinton ; D. Maurin ; C. Power ; J. I. Read ; S. Sarkar ; M. G. Walker ; M. I. Wilkinson

Source :

RBID : ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28

English descriptors

Abstract

Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.

Url:
DOI: 10.1111/j.1365-2966.2011.19387.x

Links to Exploration step

ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<author>
<name sortKey="Charbonnier, A" sort="Charbonnier, A" uniqKey="Charbonnier A" first="A." last="Charbonnier">A. Charbonnier</name>
<affiliation>
<mods:affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Combet, C" sort="Combet, C" uniqKey="Combet C" first="C." last="Combet">C. Combet</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daniel, M" sort="Daniel, M" uniqKey="Daniel M" first="M." last="Daniel">M. Daniel</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Funk, S" sort="Funk, S" uniqKey="Funk S" first="S." last="Funk">S. Funk</name>
<affiliation>
<mods:affiliation>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hinton, J A" sort="Hinton, J A" uniqKey="Hinton J" first="J. A." last="Hinton">J. A. Hinton</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jah85@leicester.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
<affiliation>
<mods:affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Power, C" sort="Power, C" uniqKey="Power C" first="C." last="Power">C. Power</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Read, J I" sort="Read, J I" uniqKey="Read J" first="J. I." last="Read">J. I. Read</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sarkar, S" sort="Sarkar, S" uniqKey="Sarkar S" first="S." last="Sarkar">S. Sarkar</name>
<affiliation>
<mods:affiliation>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jah85@leicester.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilkinson, M I" sort="Wilkinson, M I" uniqKey="Wilkinson M" first="M. I." last="Wilkinson">M. I. Wilkinson</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2011.19387.x</idno>
<idno type="url">https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000856</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future 
<emph>
<span>
<hi rend="italic">γ</hi>
</span>
</emph>
‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<author>
<name sortKey="Charbonnier, A" sort="Charbonnier, A" uniqKey="Charbonnier A" first="A." last="Charbonnier">A. Charbonnier</name>
<affiliation>
<mods:affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Combet, C" sort="Combet, C" uniqKey="Combet C" first="C." last="Combet">C. Combet</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daniel, M" sort="Daniel, M" uniqKey="Daniel M" first="M." last="Daniel">M. Daniel</name>
<affiliation>
<mods:affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Funk, S" sort="Funk, S" uniqKey="Funk S" first="S." last="Funk">S. Funk</name>
<affiliation>
<mods:affiliation>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hinton, J A" sort="Hinton, J A" uniqKey="Hinton J" first="J. A." last="Hinton">J. A. Hinton</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jah85@leicester.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maurin, D" sort="Maurin, D" uniqKey="Maurin D" first="D." last="Maurin">D. Maurin</name>
<affiliation>
<mods:affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Power, C" sort="Power, C" uniqKey="Power C" first="C." last="Power">C. Power</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Read, J I" sort="Read, J I" uniqKey="Read J" first="J. I." last="Read">J. I. Read</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sarkar, S" sort="Sarkar, S" uniqKey="Sarkar S" first="S." last="Sarkar">S. Sarkar</name>
<affiliation>
<mods:affiliation>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walker, M G" sort="Walker, M G" uniqKey="Walker M" first="M. G." last="Walker">M. G. Walker</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jah85@leicester.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilkinson, M I" sort="Wilkinson, M I" uniqKey="Wilkinson M" first="M. I." last="Wilkinson">M. I. Wilkinson</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">418</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1526">1526</biblScope>
<biblScope unit="page" to="1556">1556</biblScope>
<biblScope unit="page-count">31</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-12-11">2011-12-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular extent</term>
<term>Angular resolution</term>
<term>Angular size</term>
<term>Aniso</term>
<term>Anisotropy</term>
<term>Annihilating particle</term>
<term>Annihilation</term>
<term>Annihilation signal</term>
<term>Annihilation spectrum</term>
<term>Approximate formulae</term>
<term>Astrophysical</term>
<term>Astrophysical factor</term>
<term>Bergstr</term>
<term>Binning</term>
<term>Blue line</term>
<term>Bottom panel</term>
<term>Bringmann</term>
<term>Carina</term>
<term>Cent containment radius</term>
<term>Centre</term>
<term>Charbonnier</term>
<term>Cherenkov</term>
<term>Classical dsph</term>
<term>Classical dsphs</term>
<term>Clump</term>
<term>Constant velocity anisotropy</term>
<term>Constraint</term>
<term>Conversion factors</term>
<term>Cored</term>
<term>Cosmological</term>
<term>Cosmological simulations</term>
<term>Current data</term>
<term>Cusp slope</term>
<term>Cusped</term>
<term>Cuspy</term>
<term>Dark matter</term>
<term>Dark matter annihilation</term>
<term>Detectability</term>
<term>Detection sensitivity</term>
<term>Diemand</term>
<term>Dispersion</term>
<term>Distribution functions</term>
<term>Draco</term>
<term>Dsph</term>
<term>Dsph centre</term>
<term>Dsph distance</term>
<term>Dsphs</term>
<term>Dwarf spheroidal galaxies</term>
<term>Einasto</term>
<term>Energy range</term>
<term>Fermi</term>
<term>Fornax</term>
<term>Frenk</term>
<term>Galactic</term>
<term>Galactic centre</term>
<term>Galaxy</term>
<term>Generic</term>
<term>Generic dsph</term>
<term>Generic dsphs</term>
<term>Gilmore</term>
<term>Global parameters</term>
<term>Halo</term>
<term>Halo model</term>
<term>Hess</term>
<term>Inner parts</term>
<term>Inner slope</term>
<term>Integration angle</term>
<term>Integration angles</term>
<term>Integration region</term>
<term>Irwin hatzidimitriou</term>
<term>Jeans analysis</term>
<term>Jsubcl</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kuhlen</term>
<term>Lavalle</term>
<term>Lines show</term>
<term>Luminosity</term>
<term>Mateo</term>
<term>Mcmc</term>
<term>Mcmc analysis</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Modelling</term>
<term>Monthly notices</term>
<term>Navarro</term>
<term>Numerical integration</term>
<term>Observatory</term>
<term>Olszewski</term>
<term>Other dsphs</term>
<term>Outer slope</term>
<term>Parameter</term>
<term>Particle mass</term>
<term>Particle model</term>
<term>Particle physics factor</term>
<term>Photon</term>
<term>Phys</term>
<term>Pieri</term>
<term>Radial dependence</term>
<term>Radius</term>
<term>Reference model</term>
<term>Robust</term>
<term>Rvir</term>
<term>Scale radius</term>
<term>Sextans</term>
<term>Simulation</term>
<term>Small integration angles</term>
<term>Small radii</term>
<term>Smooth component</term>
<term>Smooth contribution</term>
<term>Smooth distribution</term>
<term>Solid angle</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Spatial distribution</term>
<term>Spherical symmetry</term>
<term>Stellar</term>
<term>Stellar density</term>
<term>Stellar kinematic data</term>
<term>Strigari</term>
<term>Subclump</term>
<term>Subclump contribution</term>
<term>Subclump distribution</term>
<term>Subclump parameters</term>
<term>Subclumps</term>
<term>Substructure</term>
<term>Symbols show</term>
<term>Total number</term>
<term>True value</term>
<term>Ultrafaint dsphs</term>
<term>Upper limit</term>
<term>Ursa</term>
<term>Velocity dispersion</term>
<term>Velocity dispersions</term>
<term>Velocity distribution</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular extent</term>
<term>Angular resolution</term>
<term>Angular size</term>
<term>Aniso</term>
<term>Anisotropy</term>
<term>Annihilating particle</term>
<term>Annihilation</term>
<term>Annihilation signal</term>
<term>Annihilation spectrum</term>
<term>Approximate formulae</term>
<term>Astrophysical</term>
<term>Astrophysical factor</term>
<term>Bergstr</term>
<term>Binning</term>
<term>Blue line</term>
<term>Bottom panel</term>
<term>Bringmann</term>
<term>Carina</term>
<term>Cent containment radius</term>
<term>Centre</term>
<term>Charbonnier</term>
<term>Cherenkov</term>
<term>Classical dsph</term>
<term>Classical dsphs</term>
<term>Clump</term>
<term>Constant velocity anisotropy</term>
<term>Constraint</term>
<term>Conversion factors</term>
<term>Cored</term>
<term>Cosmological</term>
<term>Cosmological simulations</term>
<term>Current data</term>
<term>Cusp slope</term>
<term>Cusped</term>
<term>Cuspy</term>
<term>Dark matter</term>
<term>Dark matter annihilation</term>
<term>Detectability</term>
<term>Detection sensitivity</term>
<term>Diemand</term>
<term>Dispersion</term>
<term>Distribution functions</term>
<term>Draco</term>
<term>Dsph</term>
<term>Dsph centre</term>
<term>Dsph distance</term>
<term>Dsphs</term>
<term>Dwarf spheroidal galaxies</term>
<term>Einasto</term>
<term>Energy range</term>
<term>Fermi</term>
<term>Fornax</term>
<term>Frenk</term>
<term>Galactic</term>
<term>Galactic centre</term>
<term>Galaxy</term>
<term>Generic</term>
<term>Generic dsph</term>
<term>Generic dsphs</term>
<term>Gilmore</term>
<term>Global parameters</term>
<term>Halo</term>
<term>Halo model</term>
<term>Hess</term>
<term>Inner parts</term>
<term>Inner slope</term>
<term>Integration angle</term>
<term>Integration angles</term>
<term>Integration region</term>
<term>Irwin hatzidimitriou</term>
<term>Jeans analysis</term>
<term>Jsubcl</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kuhlen</term>
<term>Lavalle</term>
<term>Lines show</term>
<term>Luminosity</term>
<term>Mateo</term>
<term>Mcmc</term>
<term>Mcmc analysis</term>
<term>Median</term>
<term>Median value</term>
<term>Median values</term>
<term>Middle panel</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Modelling</term>
<term>Monthly notices</term>
<term>Navarro</term>
<term>Numerical integration</term>
<term>Observatory</term>
<term>Olszewski</term>
<term>Other dsphs</term>
<term>Outer slope</term>
<term>Parameter</term>
<term>Particle mass</term>
<term>Particle model</term>
<term>Particle physics factor</term>
<term>Photon</term>
<term>Phys</term>
<term>Pieri</term>
<term>Radial dependence</term>
<term>Radius</term>
<term>Reference model</term>
<term>Robust</term>
<term>Rvir</term>
<term>Scale radius</term>
<term>Sextans</term>
<term>Simulation</term>
<term>Small integration angles</term>
<term>Small radii</term>
<term>Smooth component</term>
<term>Smooth contribution</term>
<term>Smooth distribution</term>
<term>Solid angle</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Spatial distribution</term>
<term>Spherical symmetry</term>
<term>Stellar</term>
<term>Stellar density</term>
<term>Stellar kinematic data</term>
<term>Strigari</term>
<term>Subclump</term>
<term>Subclump contribution</term>
<term>Subclump distribution</term>
<term>Subclump parameters</term>
<term>Subclumps</term>
<term>Substructure</term>
<term>Symbols show</term>
<term>Total number</term>
<term>True value</term>
<term>Ultrafaint dsphs</term>
<term>Upper limit</term>
<term>Ursa</term>
<term>Velocity dispersion</term>
<term>Velocity dispersions</term>
<term>Velocity distribution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>dsphs</json:string>
<json:string>dsph</json:string>
<json:string>mnras</json:string>
<json:string>mcmc</json:string>
<json:string>integration angle</json:string>
<json:string>subclump</json:string>
<json:string>monthly notices</json:string>
<json:string>phys</json:string>
<json:string>kinematic</json:string>
<json:string>mcmc analysis</json:string>
<json:string>generic</json:string>
<json:string>subclumps</json:string>
<json:string>bottom panel</json:string>
<json:string>photon</json:string>
<json:string>inner slope</json:string>
<json:string>charbonnier</json:string>
<json:string>classical dsphs</json:string>
<json:string>ursa</json:string>
<json:string>draco</json:string>
<json:string>fermi</json:string>
<json:string>astrophysical</json:string>
<json:string>kinematic data</json:string>
<json:string>dark matter annihilation</json:string>
<json:string>strigari</json:string>
<json:string>aniso</json:string>
<json:string>velocity dispersion</json:string>
<json:string>cored</json:string>
<json:string>detectability</json:string>
<json:string>carina</json:string>
<json:string>pieri</json:string>
<json:string>kuhlen</json:string>
<json:string>cuspy</json:string>
<json:string>bergstr</json:string>
<json:string>median</json:string>
<json:string>sextans</json:string>
<json:string>binning</json:string>
<json:string>fornax</json:string>
<json:string>halo</json:string>
<json:string>olszewski</json:string>
<json:string>solid lines</json:string>
<json:string>bringmann</json:string>
<json:string>solid angle</json:string>
<json:string>angular resolution</json:string>
<json:string>stellar</json:string>
<json:string>galactic</json:string>
<json:string>robust</json:string>
<json:string>navarro</json:string>
<json:string>einasto</json:string>
<json:string>diemand</json:string>
<json:string>dsph centre</json:string>
<json:string>rvir</json:string>
<json:string>frenk</json:string>
<json:string>jsubcl</json:string>
<json:string>median value</json:string>
<json:string>cherenkov</json:string>
<json:string>angular size</json:string>
<json:string>particle mass</json:string>
<json:string>integration angles</json:string>
<json:string>annihilation spectrum</json:string>
<json:string>cusped</json:string>
<json:string>modelling</json:string>
<json:string>lavalle</json:string>
<json:string>subclump contribution</json:string>
<json:string>anisotropy</json:string>
<json:string>lines show</json:string>
<json:string>median values</json:string>
<json:string>smooth component</json:string>
<json:string>scale radius</json:string>
<json:string>inner parts</json:string>
<json:string>small radii</json:string>
<json:string>other dsphs</json:string>
<json:string>substructure</json:string>
<json:string>parameter</json:string>
<json:string>annihilation</json:string>
<json:string>mateo</json:string>
<json:string>radial dependence</json:string>
<json:string>smooth distribution</json:string>
<json:string>galactic centre</json:string>
<json:string>conversion factors</json:string>
<json:string>stellar density</json:string>
<json:string>middle panel</json:string>
<json:string>simulation</json:string>
<json:string>clump</json:string>
<json:string>centre</json:string>
<json:string>dispersion</json:string>
<json:string>cent containment radius</json:string>
<json:string>halo model</json:string>
<json:string>solid line</json:string>
<json:string>subclump parameters</json:string>
<json:string>true value</json:string>
<json:string>numerical integration</json:string>
<json:string>annihilation signal</json:string>
<json:string>spatial distribution</json:string>
<json:string>upper limit</json:string>
<json:string>integration region</json:string>
<json:string>annihilating particle</json:string>
<json:string>generic dsph</json:string>
<json:string>hess</json:string>
<json:string>luminosity</json:string>
<json:string>constraint</json:string>
<json:string>gilmore</json:string>
<json:string>reference model</json:string>
<json:string>outer slope</json:string>
<json:string>approximate formulae</json:string>
<json:string>velocity dispersions</json:string>
<json:string>cusp slope</json:string>
<json:string>small integration angles</json:string>
<json:string>ultrafaint dsphs</json:string>
<json:string>particle physics factor</json:string>
<json:string>velocity distribution</json:string>
<json:string>symbols show</json:string>
<json:string>stellar kinematic data</json:string>
<json:string>blue line</json:string>
<json:string>global parameters</json:string>
<json:string>particle model</json:string>
<json:string>detection sensitivity</json:string>
<json:string>dwarf spheroidal galaxies</json:string>
<json:string>generic dsphs</json:string>
<json:string>total number</json:string>
<json:string>constant velocity anisotropy</json:string>
<json:string>dark matter</json:string>
<json:string>cosmological simulations</json:string>
<json:string>distribution functions</json:string>
<json:string>dsph distance</json:string>
<json:string>spherical symmetry</json:string>
<json:string>angular extent</json:string>
<json:string>energy range</json:string>
<json:string>model parameters</json:string>
<json:string>subclump distribution</json:string>
<json:string>current data</json:string>
<json:string>astrophysical factor</json:string>
<json:string>jeans analysis</json:string>
<json:string>classical dsph</json:string>
<json:string>irwin hatzidimitriou</json:string>
<json:string>smooth contribution</json:string>
<json:string>radius</json:string>
<json:string>galaxy</json:string>
<json:string>cosmological</json:string>
<json:string>observatory</json:string>
<json:string>plummer</json:string>
<json:string>cusp</json:string>
<json:string>appropriate radius</json:string>
<json:string>latter parameters</json:string>
<json:string>generic haloes</json:string>
<json:string>source extension</json:string>
<json:string>clump mass fraction</json:string>
<json:string>distribution function</json:string>
<json:string>smooth halo</json:string>
<json:string>spectral shape</json:string>
<json:string>energy threshold</json:string>
<json:string>halo mass</json:string>
<json:string>nearby dsphs</json:string>
<json:string>inner slopes</json:string>
<json:string>generic models</json:string>
<json:string>different values</json:string>
<json:string>blue lines</json:string>
<json:string>black lines</json:string>
<json:string>larger values</json:string>
<json:string>background level</json:string>
<json:string>background control region</json:string>
<json:string>virial equilibrium</json:string>
<json:string>rotation curves</json:string>
<json:string>substructure distribution</json:string>
<json:string>typical range</json:string>
<json:string>effective size</json:string>
<json:string>same data</json:string>
<json:string>velocity distributions</json:string>
<json:string>member stars</json:string>
<json:string>total luminosity</json:string>
<json:string>halo parameters</json:string>
<json:string>generalized hernquist</json:string>
<json:string>stellar population</json:string>
<json:string>particle physics model</json:string>
<json:string>jeans equation</json:string>
<json:string>sommerfeld enhancement</json:string>
<json:string>quick estimates</json:string>
<json:string>particle physics</json:string>
<json:string>average spectrum</json:string>
<json:string>large values</json:string>
<json:string>free parameters</json:string>
<json:string>differential photon</json:string>
<json:string>posterior distributions</json:string>
<json:string>parameter space</json:string>
<json:string>observational uncertainty</json:string>
<json:string>robust estimate</json:string>
<json:string>spatial extent</json:string>
<json:string>logarithmic slope</json:string>
<json:string>velocity anisotropy</json:string>
<json:string>other parameters</json:string>
<json:string>stellar kinematics</json:string>
<json:string>structure formation simulations</json:string>
<json:string>joint distributions</json:string>
<json:string>marginalized pdfs</json:string>
<json:string>parameter correlations</json:string>
<json:string>several studies</json:string>
<json:string>total mass</json:string>
<json:string>galaxy formation</json:string>
<json:string>different priors</json:string>
<json:string>agis collaboration</json:string>
<json:string>minimal supersymmetric</json:string>
<json:string>online version</json:string>
<json:string>recent simulations</json:string>
<json:string>different binnings</json:string>
<json:string>cherenkov telescope array</json:string>
<json:string>different light</json:string>
<json:string>best target</json:string>
<json:string>different integration angles</json:string>
<json:string>smallest amount</json:string>
<json:string>mission lifetime</json:string>
<json:string>galactic halo</json:string>
<json:string>different works</json:string>
<json:string>subclump contributions</json:string>
<json:string>clump distribution</json:string>
<json:string>mass distribution</json:string>
<json:string>galactic contributions</json:string>
<json:string>critical integration angle</json:string>
<json:string>solid bars</json:string>
<json:string>critical angle</json:string>
<json:string>area telescope</json:string>
<json:string>astrophysical factors</json:string>
<json:string>atmospheric cherenkov telescopes</json:string>
<json:string>middle panels</json:string>
<json:string>grey arrow</json:string>
<json:string>correct solution</json:string>
<json:string>more data</json:string>
<json:string>panels show</json:string>
<json:string>error bars</json:string>
<json:string>deep exposure</json:string>
<json:string>previous section</json:string>
<json:string>mcmc technique</json:string>
<json:string>high mass</json:string>
<json:string>measurement uncertainties</json:string>
<json:string>unknown parameters</json:string>
<json:string>solid angle dependence</json:string>
<json:string>true result</json:string>
<json:string>indirect detection</json:string>
<json:string>cone volume</json:string>
<json:string>clump luminosity</json:string>
<json:string>current uncertainties</json:string>
<json:string>quick inspection</json:string>
<json:string>full calculation</json:string>
<json:string>different observation times</json:string>
<json:string>spherical integration region</json:string>
<json:string>critical distance</json:string>
<json:string>full circles</json:string>
<json:string>latter case</json:string>
<json:string>integration angle dependence</json:string>
<json:string>subclump population</json:string>
<json:string>bayesian approach</json:string>
<json:string>second approach</json:string>
<json:string>black line</json:string>
<json:string>aniso values</json:string>
<json:string>large radii</json:string>
<json:string>green curves</json:string>
<json:string>bottom panels</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>A. Charbonnier</name>
<affiliations>
<json:string>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Combet</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Daniel</name>
<affiliations>
<json:string>Department of Physics, Durham University, South Road, Durham DH1 3LE</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Funk</name>
<affiliations>
<json:string>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. A. Hinton</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
<json:string>E-mail: jah85@leicester.ac.uk</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Maurin</name>
<affiliations>
<json:string>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</json:string>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
<json:string>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France</json:string>
<json:string>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Power</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
<json:string>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. I. Read</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
<json:string>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Sarkar</name>
<affiliations>
<json:string>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. G. Walker</name>
<affiliations>
<json:string>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</json:string>
<json:string>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA</json:string>
<json:string>E-mail: jah85@leicester.ac.uk</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. I. Wilkinson</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>astroparticle physics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methods: miscellaneous</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: dwarf</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: kinematics and dynamics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dark matter</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gamma‐rays: general</value>
</json:item>
</subject>
<articleId>
<json:string>MNR19387</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-2NRBH7JJ-J</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>24059</pdfWordCount>
<pdfCharCount>123494</pdfCharCount>
<pdfVersion>1.6</pdfVersion>
<pdfPageCount>31</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>448</abstractWordCount>
<abstractCharCount>2890</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>418</volume>
<issue>3</issue>
<pages>
<first>1526</first>
<last>1556</last>
<total>31</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>1532</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB</json:string>
<json:string>Department of Physics, Durham University, South Road, Durham DH</json:string>
<json:string>University of Oxford</json:string>
<json:string>Astronomy, Inc.</json:string>
<json:string>University Research Fellowship</json:string>
<json:string>Department of Physics</json:string>
<json:string>Department of Physics, Institute for Astronomy, ETH Z</json:string>
<json:string>CTA Consortium</json:string>
<json:string>AGIS Collaboration</json:string>
<json:string>Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology</json:string>
<json:string>SLAC National Accelerator Laboratory, Stanford University, Stanford, CA</json:string>
<json:string>Fermi‐LAT Collaboration</json:string>
<json:string>University of Leicester</json:string>
<json:string>Radio Astronomy Research, The University of Western Australia</json:string>
<json:string>Harvard–Smithsonian Center for Astrophysics</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>S. Funk</json:string>
<json:string>Ursa Minor</json:string>
<json:string>Via Lactea</json:string>
<json:string>Paris Cedex</json:string>
<json:string>A. Charbonnier</json:string>
<json:string>S. Sarkar</json:string>
<json:string>G. Walker</json:string>
<json:string>Joseph Fourier</json:string>
<json:string>M. I. Wilkinson</json:string>
<json:string>HESS Collaboration</json:string>
<json:string>Marie Curie</json:string>
<json:string>I. Read</json:string>
<json:string>D. Maurin</json:string>
<json:string>C. Power</json:string>
<json:string>A. Hinton</json:string>
<json:string>Facility</json:string>
<json:string>J. Complications</json:string>
<json:string>Walter Dehnen</json:string>
</persName>
<placeName>
<json:string>Paris</json:string>
<json:string>Australia</json:string>
<json:string>Grenoble</json:string>
<json:string>Velocity</json:string>
<json:string>MA</json:string>
<json:string>France</json:string>
<json:string>Cambridge</json:string>
<json:string>Stirling</json:string>
</placeName>
<ref_url>
<json:string>http://cosmologist.info/cosmomc</json:string>
</ref_url>
<ref_bibl>
<json:string>Walker et al. (2011)</json:string>
<json:string>Bringmann et al. 2008</json:string>
<json:string>Evans, Ferrer & Sarkar 2004</json:string>
<json:string>Wolf et al. 2010</json:string>
<json:string>Moore et al. 2000</json:string>
<json:string>A. Charbonnier et al.</json:string>
<json:string>Pieri et al. (2009a)</json:string>
<json:string>Aharonian et al. 2004</json:string>
<json:string>Hernquist 1990</json:string>
<json:string>Hisano, Matsumoto & Nojiri 2004</json:string>
<json:string>Goerdt et al. 2010</json:string>
<json:string>Cannoni et al. (2010)</json:string>
<json:string>Koch et al. 2007</json:string>
<json:string>Bringmann et al. (2008)</json:string>
<json:string>Governato et al. 2010</json:string>
<json:string>Metropolis et al. 1953</json:string>
<json:string>Ishiyama, Makino & Ebisuzaki 2010</json:string>
<json:string>Acciari et al. (2010)</json:string>
<json:string>Navarro et al. 1996a</json:string>
<json:string>Essig et al. (2009)</json:string>
<json:string>Pieri et al. (2009b)</json:string>
<json:string>Walker et al. (2009b)</json:string>
<json:string>Palomares-Ruiz & Siegal-Gaskins 2010</json:string>
<json:string>Hisano et al. 2005</json:string>
<json:string>Dehnen 1993</json:string>
<json:string>Acciari et al. 2010</json:string>
<json:string>Strigari et al. 2008</json:string>
<json:string>Abdo et al. (2010)</json:string>
<json:string>Abramowski et al. 2011b</json:string>
<json:string>Walker et al. 2007</json:string>
<json:string>Strigari et al. (2007b)</json:string>
<json:string>Diemand et al. 2008</json:string>
<json:string>Hogan & Dalcanton 2000</json:string>
<json:string>Lewis & Bridle 2002</json:string>
<json:string>Battaglia et al. 2008</json:string>
<json:string>Horns 2005</json:string>
<json:string>Evans et al. (2004)</json:string>
<json:string>Pieri, Bertone & Branchini 2008</json:string>
<json:string>Diemand, Moore & Stadel 2005</json:string>
<json:string>Lavalle et al. 2008</json:string>
<json:string>Navarro, Frenk & White 1996a</json:string>
<json:string>Charbonnier, Combet & Maurin, 2011</json:string>
<json:string>Kleyna et al. 2003</json:string>
<json:string>[0, 1]</json:string>
<json:string>Wilkinson et al.</json:string>
<json:string>Abramowski et al. 2011a</json:string>
<json:string>Pieri et al. 2009a</json:string>
<json:string>Boyarsky et al. 2006</json:string>
<json:string>Strigari et al. 2007b</json:string>
<json:string>Mateo 1998</json:string>
<json:string>CTA Consortium 2010</json:string>
<json:string>Albert et al. 2008</json:string>
<json:string>Mateo et al.</json:string>
<json:string>Berezinsky, Gurevich & Zybin 1992</json:string>
<json:string>Kuhlen, Diemand & Madau 2008</json:string>
<json:string>Zhao 1996</json:string>
<json:string>Stecker 1978</json:string>
<json:string>Walker et al. 2011</json:string>
<json:string>Gunn et al. 1978</json:string>
<json:string>Strigari et al. 2007a</json:string>
<json:string>FermiLAT Collaboration 2010</json:string>
<json:string>Funk et al. 2008</json:string>
<json:string>Walker et al. 2009a</json:string>
<json:string>Bringmann et al. 2009</json:string>
<json:string>Goerdt et al. 2006</json:string>
<json:string>Springel et al. 2008</json:string>
<json:string>Kuhlen 2010</json:string>
<json:string>Navarro, Frenk & White 1997</json:string>
<json:string>Hastings 1970</json:string>
<json:string>Walker et al.</json:string>
<json:string>Abdo et al. 2010</json:string>
<json:string>AGIS Collaboration 2010</json:string>
<json:string>Fornengo et al. (2004)</json:string>
<json:string>Lake 1990</json:string>
<json:string>Silk & Bloemen 1987</json:string>
<json:string>Essig, Sehgal & Strigari 2009</json:string>
<json:string>Jungman, Kamionkowski & Griest 1996</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-2NRBH7JJ-J</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2011.19387.x</json:string>
</doi>
<id>2BCCB1150A2D81AAD365269709A34F07AA408A28</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future 
<emph>
<span>
<hi rend="italic">γ</hi>
</span>
</emph>
‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</licence>
</availability>
<date type="published" when="2011-12-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future 
<emph>
<span>
<hi rend="italic">γ</hi>
</span>
</emph>
‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<title level="a" type="short">γ‐ray from dark matter annihilation in dSphs</title>
<author xml:id="author-0000">
<persName>
<forename type="first">A.</forename>
<surname>Charbonnier</surname>
</persName>
<affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">C.</forename>
<surname>Combet</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">M.</forename>
<surname>Daniel</surname>
</persName>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">S.</forename>
<surname>Funk</surname>
</persName>
<affiliation>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004" role="corresp">
<persName>
<forename type="first">J. A.</forename>
<surname>Hinton</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>E‐mail: jah85@leicester.ac.uk (JAH); dmaurin@lpsc.in2p3.fr (DM); walker@ast.cam.ac.uk (MGW)</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">D.</forename>
<surname>Maurin</surname>
</persName>
<affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">C.</forename>
<surname>Power</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">J. I.</forename>
<surname>Read</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<forename type="first">S.</forename>
<surname>Sarkar</surname>
</persName>
<affiliation>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</affiliation>
</author>
<author xml:id="author-0009" role="corresp">
<persName>
<forename type="first">M. G.</forename>
<surname>Walker</surname>
</persName>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>E‐mail: jah85@leicester.ac.uk (JAH); dmaurin@lpsc.in2p3.fr (DM); walker@ast.cam.ac.uk (MGW)</affiliation>
</author>
<author xml:id="author-0010">
<persName>
<forename type="first">M. I.</forename>
<surname>Wilkinson</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
</author>
<idno type="istex">2BCCB1150A2D81AAD365269709A34F07AA408A28</idno>
<idno type="ark">ark:/67375/WNG-2NRBH7JJ-J</idno>
<idno type="DOI">10.1111/j.1365-2966.2011.19387.x</idno>
<idno type="unit">MNR19387</idno>
<idno type="toTypesetVersion">file:MNR.MNR19387.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2011.418.issue-3</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">418</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1526">1526</biblScope>
<biblScope unit="page" to="1556">1556</biblScope>
<biblScope unit="page-count">31</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-12-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the
<hi rend="italic">angular size</hi>
of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical
<hi rend="italic">J</hi>
‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs
<hi rend="italic">directly</hi>
from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived
<hi rend="italic">J</hi>
‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our
<hi rend="italic">J</hi>
‐factor determinations recover the correct solution within our quoted uncertainties.</p>
<p>Our key findings are as follows: (i) subclumps in the dSphs do
<hi rend="italic">not</hi>
usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne
<hi rend="italic">Fermi</hi>
‐Large Area Telescope (
<hi rend="italic">Fermi</hi>
‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii)
<hi rend="italic">no</hi>
DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γ
<hi rend="subscript">prior</hi>
≤ 1 provides
<hi rend="italic">J</hi>
‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the
<hi rend="italic">J</hi>
‐factor is best constrained at a critical integration angle α
<hi rend="subscript">c</hi>
= 2
<hi rend="italic">r</hi>
<hi rend="subscript">h</hi>
/
<hi rend="italic">d</hi>
(where
<hi rend="italic">r</hi>
<hi rend="subscript">h</hi>
is the half‐light radius and
<hi rend="italic">d</hi>
is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the
<hi rend="italic">Fermi</hi>
‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the
<hi rend="italic">Fermi</hi>
‐LAT will
<hi rend="italic">not</hi>
have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">astroparticle physics</term>
<term xml:id="k2">methods: miscellaneous</term>
<term xml:id="k3">galaxies: dwarf</term>
<term xml:id="k4">galaxies: kinematics and dynamics</term>
<term xml:id="k5">dark matter</term>
<term xml:id="k6">gamma‐rays: general</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12103">
<doi origin="wiley">10.1111/mnr.2011.418.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="418">418</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2011-12-11">December 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2011.19387.x</doi>
<idGroup>
<id type="unit" value="MNR19387"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="31"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.0.1 mode:FullText" date="2011-12-05"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-11-09"></event>
<event type="publishedOnlineFinalForm" date="2011-12-06"></event>
<event type="firstOnline" date="2011-11-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1526">1526</numbering>
<numbering type="pageLast" number="1556">1556</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>jah85@leicester.ac.uk</email>
(JAH);
<email>dmaurin@lpsc.in2p3.fr</email>
(DM);
<email>walker@ast.cam.ac.uk</email>
(MGW)</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendices</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR19387.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2011 July 5. Received 2011 July 1; in original form 2011 April 3</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="28"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="176"></count>
<count type="referenceTotal" number="96"></count>
<count type="linksCrossRef" number="407"></count>
</countGroup>
<titleGroup>
<title type="main">Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future 
<span type="mathematics">
<i>γ</i>
</span>
‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
<title type="shortAuthors">
<i>A. Charbonnier et al.</i>
</title>
<title type="short">
<i>γ‐ray from dark matter annihilation in dSphs</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>A.</givenNames>
<familyName>Charbonnier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>C.</givenNames>
<familyName>Combet</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>M.</givenNames>
<familyName>Daniel</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>S.</givenNames>
<familyName>Funk</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2" corresponding="yes">
<personName>
<givenNames>J. A.</givenNames>
<familyName>Hinton</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1 #a2 #a5 #a6">
<personName>
<givenNames>D.</givenNames>
<familyName>Maurin</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a2 #a7">
<personName>
<givenNames>C.</givenNames>
<familyName>Power</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a2 #a8">
<personName>
<givenNames>J. I.</givenNames>
<familyName>Read</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a9">
<personName>
<givenNames>S.</givenNames>
<familyName>Sarkar</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr10" affiliationRef="#a10 #a11" corresponding="yes">
<personName>
<givenNames>M. G.</givenNames>
<familyName>Walker</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr11" affiliationRef="#a2">
<personName>
<givenNames>M. I.</givenNames>
<familyName>Wilkinson</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2">
<unparsedAffiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3">
<unparsedAffiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US">
<unparsedAffiliation>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="FR">
<unparsedAffiliation>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="FR">
<unparsedAffiliation>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7" countryCode="AU">
<unparsedAffiliation>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a8" countryCode="CH">
<unparsedAffiliation>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a9">
<unparsedAffiliation>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a10">
<unparsedAffiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a11" countryCode="US">
<unparsedAffiliation>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">astroparticle physics</keyword>
<keyword xml:id="k2">methods: miscellaneous</keyword>
<keyword xml:id="k3">galaxies: dwarf</keyword>
<keyword xml:id="k4">galaxies: kinematics and dynamics</keyword>
<keyword xml:id="k5">dark matter</keyword>
<keyword xml:id="k6">gamma‐rays: general</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>ASCII files.</b>
ASCII files containing the most‐likely, 68 and 95 per cent CLs on the quantity
<i>J</i>
<sub>int</sub>
) for the eight classical dSphs that we analysed.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:00358711:media:mnr19387:MNR_19387_sm_asciifiles"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the
<i>angular size</i>
of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical
<i>J</i>
‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs
<i>directly</i>
from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived
<i>J</i>
‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our
<i>J</i>
‐factor determinations recover the correct solution within our quoted uncertainties.</p>
<p>Our key findings are as follows: (i) subclumps in the dSphs do
<i>not</i>
usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne
<i>Fermi</i>
‐Large Area Telescope (
<i>Fermi</i>
‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii)
<i>no</i>
DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γ
<sub>prior</sub>
≤ 1 provides
<i>J</i>
‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the
<i>J</i>
‐factor is best constrained at a critical integration angle α
<sub>c</sub>
= 2
<i>r</i>
<sub>h</sub>
/
<i>d</i>
(where
<i>r</i>
<sub>h</sub>
is the half‐light radius and
<i>d</i>
is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the
<i>Fermi</i>
‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the
<i>Fermi</i>
‐LAT will
<i>not</i>
have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>γ‐ray from dark matter annihilation in dSphs</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies</title>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Charbonnier</namePart>
<affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Combet</namePart>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Daniel</namePart>
<affiliation>Department of Physics, Durham University, South Road, Durham DH1 3LE</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Funk</namePart>
<affiliation>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. A.</namePart>
<namePart type="family">Hinton</namePart>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>E-mail: jah85@leicester.ac.uk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Maurin</namePart>
<affiliation>Laboratoire de Physique Nucléaire et Hautes Energies, CNRS‐IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05, France</affiliation>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026 Grenoble, France</affiliation>
<affiliation>Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Power</namePart>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. I.</namePart>
<namePart type="family">Read</namePart>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<affiliation>Department of Physics, Institute for Astronomy, ETH Zürich, Wolfgang‐Pauli‐Strasse 16, CH‐8093 Zürich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Sarkar</namePart>
<affiliation>Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. G.</namePart>
<namePart type="family">Walker</namePart>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA</affiliation>
<affiliation>E-mail: jah85@leicester.ac.uk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. I.</namePart>
<namePart type="family">Wilkinson</namePart>
<affiliation>Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-12-11</dateIssued>
<edition>Accepted 2011 July 5. Received 2011 July 1; in original form 2011 April 3</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">28</extent>
<extent unit="tables">3</extent>
<extent unit="formulas">176</extent>
<extent unit="references">96</extent>
<extent unit="linksCrossRef">407</extent>
</physicalDescription>
<abstract lang="en">Due to their large dynamical mass‐to‐light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the indirect detection of dark matter (DM) in γ‐rays. We examine their detectability by present and future γ‐ray observatories. The key innovative features of our analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby objects have higher γ‐ray flux, their larger angular extent can make them less attractive targets for background‐dominated instruments; (ii) we derive DM profiles and the astrophysical J‐factor (which parametrizes the expected γ‐ray flux, independently of the choice of DM particle model) for the classical dSphs directly from photometric and kinematic data. We assume very little about the DM profile, modelling this as a smooth split‐power‐law distribution, with and without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over unknown parameters and determine the sensitivity of our derived J‐factors to both model and measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our J‐factor determinations recover the correct solution within our quoted uncertainties. Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal; (ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored haloes can be up to ∼50 times worse than when estimated assuming them to be point‐like. Even for the satellite‐borne Fermi‐Large Area Telescope (Fermi‐LAT), the sensitivity is significantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out by current data, but using a prior on the inner DM cusp slope 0 ≤γprior≤ 1 provides J‐factor estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J‐factor is best constrained at a critical integration angle αc= 2rh/d (where rh is the half‐light radius and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ‐ray observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi‐LAT integrated over the mission lifetime are more promising than observations with the planned Cherenkov Telescope Array for DM particle mass ≲ 700 GeV. However, even the Fermi‐LAT will not have sufficient integrated signal from the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model. Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be considered in future work.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>astroparticle physics</topic>
<topic>methods: miscellaneous</topic>
<topic>galaxies: dwarf</topic>
<topic>galaxies: kinematics and dynamics</topic>
<topic>dark matter</topic>
<topic>gamma‐rays: general</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> ASCII files. ASCII files containing the most‐likely, 68 and 95 per cent CLs on the quantity J(αint) for the eight classical dSphs that we analysed.Supporting Info Item: Supporting info item - </note>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>418</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1526</start>
<end>1556</end>
<total>31</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">2BCCB1150A2D81AAD365269709A34F07AA408A28</identifier>
<identifier type="ark">ark:/67375/WNG-2NRBH7JJ-J</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2011.19387.x</identifier>
<identifier type="ArticleID">MNR19387</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/2BCCB1150A2D81AAD365269709A34F07AA408A28/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000856 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000856 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2BCCB1150A2D81AAD365269709A34F07AA408A28
   |texte=   Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ‐ray observatories – I. The classical dwarf spheroidal galaxies
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024