Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of the regular solution model in the condensation of protoplanetary dust

Identifieur interne : 000815 ( Istex/Corpus ); précédent : 000814; suivant : 000816

The effect of the regular solution model in the condensation of protoplanetary dust

Auteurs : F. C. Pignatale ; S. T. Maddison ; V. Taquet ; G. Brooks ; K. Liffman

Source :

RBID : ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128

English descriptors

Abstract

We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.

Url:
DOI: 10.1111/j.1365-2966.2011.18555.x

Links to Exploration step

ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fpignatale@astro.swin.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation>
<mods:affiliation>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation>
<mods:affiliation>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2011.18555.x</idno>
<idno type="url">https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000815</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000815</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fpignatale@astro.swin.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation>
<mods:affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation>
<mods:affiliation>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation>
<mods:affiliation>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">414</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="2386">2386</biblScope>
<biblScope unit="page" to="2405">2405</biblScope>
<biblScope unit="page-count">20</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-07-01">2011-07-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activity data</term>
<term>Akermanite</term>
<term>Albite</term>
<term>Allende prieto</term>
<term>Anorthite</term>
<term>Behaviour</term>
<term>Bottom panel</term>
<term>Byerley takebe</term>
<term>Caal2</term>
<term>Caal2 sio6</term>
<term>Chondrite</term>
<term>Compound</term>
<term>Condensation</term>
<term>Condensation processes</term>
<term>Condensation sequence</term>
<term>Condensation sequences</term>
<term>Condensation temperature</term>
<term>Condensation temperatures</term>
<term>Constant ratio</term>
<term>Corundum</term>
<term>Dehoff</term>
<term>Different values</term>
<term>Diopside</term>
<term>Disc</term>
<term>Dullemond</term>
<term>Energy minimization</term>
<term>Energy minimization method</term>
<term>Enstatite</term>
<term>Entire range</term>
<term>Entire temperature range</term>
<term>Experimental data</term>
<term>Fassaite</term>
<term>Fayalite</term>
<term>Feal2</term>
<term>Ferrosilite</term>
<term>Fesio3</term>
<term>Fitting polynomials</term>
<term>Forsterite</term>
<term>Full list</term>
<term>Gail</term>
<term>Gehlenite</term>
<term>Geochimica cosmochimica acta</term>
<term>Good agreement</term>
<term>Grossman</term>
<term>Hibonite</term>
<term>High temperature</term>
<term>High temperatures</term>
<term>Ideal behaviour</term>
<term>Ideal solution</term>
<term>Ideal solution model</term>
<term>Ideal solution models</term>
<term>Initial composition</term>
<term>Kmol</term>
<term>Large range</term>
<term>Liquid phase</term>
<term>Lower limit</term>
<term>Lower temperature</term>
<term>Lower temperatures</term>
<term>Magnesiowustite</term>
<term>Maximum amount</term>
<term>Meeus</term>
<term>Melilite</term>
<term>Melilite phase</term>
<term>Metallurgical materials trans</term>
<term>Mgal2</term>
<term>Mgsio3</term>
<term>Middle panel</term>
<term>Minimization</term>
<term>Mnras</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Monthly notices</term>
<term>Nafziger</term>
<term>Nafziger muan</term>
<term>Olivine</term>
<term>Olivine phase</term>
<term>Olivine species</term>
<term>Pasek</term>
<term>Physical chemistry</term>
<term>Pignatale</term>
<term>Plagioclase</term>
<term>Plagioclase solution</term>
<term>Pollack</term>
<term>Pressure decreases</term>
<term>Previous work</term>
<term>Previous works</term>
<term>Protoplanetary</term>
<term>Protoplanetary disc</term>
<term>Protoplanetary disc phase</term>
<term>Protoplanetary discs</term>
<term>Protoplanetary dust</term>
<term>Protoplanetary dust figure</term>
<term>Pyroxene</term>
<term>Reaction rates</term>
<term>Reference temperature</term>
<term>Regular solution</term>
<term>Regular solution model</term>
<term>Results show</term>
<term>Silicate</term>
<term>Simulation</term>
<term>Sio2</term>
<term>Sio4</term>
<term>Solar system</term>
<term>Solid phases</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Solid species</term>
<term>Solution behaviour</term>
<term>Spinel</term>
<term>Stable compound</term>
<term>Sulphide</term>
<term>Supplemental calculator</term>
<term>Temperature range</term>
<term>Thermodynamic</term>
<term>Total number</term>
<term>Troilite</term>
<term>Warmer region</term>
<term>Xcat</term>
<term>Yoneda</term>
<term>Yoneda grossman</term>
<term>Young stars</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activity data</term>
<term>Akermanite</term>
<term>Albite</term>
<term>Allende prieto</term>
<term>Anorthite</term>
<term>Behaviour</term>
<term>Bottom panel</term>
<term>Byerley takebe</term>
<term>Caal2</term>
<term>Caal2 sio6</term>
<term>Chondrite</term>
<term>Compound</term>
<term>Condensation</term>
<term>Condensation processes</term>
<term>Condensation sequence</term>
<term>Condensation sequences</term>
<term>Condensation temperature</term>
<term>Condensation temperatures</term>
<term>Constant ratio</term>
<term>Corundum</term>
<term>Dehoff</term>
<term>Different values</term>
<term>Diopside</term>
<term>Disc</term>
<term>Dullemond</term>
<term>Energy minimization</term>
<term>Energy minimization method</term>
<term>Enstatite</term>
<term>Entire range</term>
<term>Entire temperature range</term>
<term>Experimental data</term>
<term>Fassaite</term>
<term>Fayalite</term>
<term>Feal2</term>
<term>Ferrosilite</term>
<term>Fesio3</term>
<term>Fitting polynomials</term>
<term>Forsterite</term>
<term>Full list</term>
<term>Gail</term>
<term>Gehlenite</term>
<term>Geochimica cosmochimica acta</term>
<term>Good agreement</term>
<term>Grossman</term>
<term>Hibonite</term>
<term>High temperature</term>
<term>High temperatures</term>
<term>Ideal behaviour</term>
<term>Ideal solution</term>
<term>Ideal solution model</term>
<term>Ideal solution models</term>
<term>Initial composition</term>
<term>Kmol</term>
<term>Large range</term>
<term>Liquid phase</term>
<term>Lower limit</term>
<term>Lower temperature</term>
<term>Lower temperatures</term>
<term>Magnesiowustite</term>
<term>Maximum amount</term>
<term>Meeus</term>
<term>Melilite</term>
<term>Melilite phase</term>
<term>Metallurgical materials trans</term>
<term>Mgal2</term>
<term>Mgsio3</term>
<term>Middle panel</term>
<term>Minimization</term>
<term>Mnras</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Monthly notices</term>
<term>Nafziger</term>
<term>Nafziger muan</term>
<term>Olivine</term>
<term>Olivine phase</term>
<term>Olivine species</term>
<term>Pasek</term>
<term>Physical chemistry</term>
<term>Pignatale</term>
<term>Plagioclase</term>
<term>Plagioclase solution</term>
<term>Pollack</term>
<term>Pressure decreases</term>
<term>Previous work</term>
<term>Previous works</term>
<term>Protoplanetary</term>
<term>Protoplanetary disc</term>
<term>Protoplanetary disc phase</term>
<term>Protoplanetary discs</term>
<term>Protoplanetary dust</term>
<term>Protoplanetary dust figure</term>
<term>Pyroxene</term>
<term>Reaction rates</term>
<term>Reference temperature</term>
<term>Regular solution</term>
<term>Regular solution model</term>
<term>Results show</term>
<term>Silicate</term>
<term>Simulation</term>
<term>Sio2</term>
<term>Sio4</term>
<term>Solar system</term>
<term>Solid phases</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Solid species</term>
<term>Solution behaviour</term>
<term>Spinel</term>
<term>Stable compound</term>
<term>Sulphide</term>
<term>Supplemental calculator</term>
<term>Temperature range</term>
<term>Thermodynamic</term>
<term>Total number</term>
<term>Troilite</term>
<term>Warmer region</term>
<term>Xcat</term>
<term>Yoneda</term>
<term>Yoneda grossman</term>
<term>Young stars</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>forsterite</json:string>
<json:string>enstatite</json:string>
<json:string>protoplanetary</json:string>
<json:string>sio4</json:string>
<json:string>regular solution model</json:string>
<json:string>kmol</json:string>
<json:string>corundum</json:string>
<json:string>condensation sequence</json:string>
<json:string>protoplanetary discs</json:string>
<json:string>mnras</json:string>
<json:string>monthly notices</json:string>
<json:string>olivine</json:string>
<json:string>melilite</json:string>
<json:string>hibonite</json:string>
<json:string>pasek</json:string>
<json:string>caal2</json:string>
<json:string>gail</json:string>
<json:string>fayalite</json:string>
<json:string>yoneda grossman</json:string>
<json:string>plagioclase</json:string>
<json:string>spinel</json:string>
<json:string>sulphide</json:string>
<json:string>experimental data</json:string>
<json:string>sio2</json:string>
<json:string>ideal solution</json:string>
<json:string>mgsio3</json:string>
<json:string>fesio3</json:string>
<json:string>gehlenite</json:string>
<json:string>solution behaviour</json:string>
<json:string>pignatale</json:string>
<json:string>akermanite</json:string>
<json:string>xcat</json:string>
<json:string>minimization</json:string>
<json:string>ferrosilite</json:string>
<json:string>anorthite</json:string>
<json:string>grossman</json:string>
<json:string>solar system</json:string>
<json:string>dehoff</json:string>
<json:string>magnesiowustite</json:string>
<json:string>nafziger</json:string>
<json:string>diopside</json:string>
<json:string>ideal solution model</json:string>
<json:string>fassaite</json:string>
<json:string>troilite</json:string>
<json:string>mgal2</json:string>
<json:string>behaviour</json:string>
<json:string>activity data</json:string>
<json:string>pollack</json:string>
<json:string>dullemond</json:string>
<json:string>chondrite</json:string>
<json:string>temperature range</json:string>
<json:string>albite</json:string>
<json:string>solid species</json:string>
<json:string>pyroxene</json:string>
<json:string>meeus</json:string>
<json:string>feal2</json:string>
<json:string>silicate</json:string>
<json:string>geochimica cosmochimica acta</json:string>
<json:string>protoplanetary dust</json:string>
<json:string>solid solutions</json:string>
<json:string>condensation temperatures</json:string>
<json:string>condensation sequences</json:string>
<json:string>pressure decreases</json:string>
<json:string>condensation</json:string>
<json:string>constant ratio</json:string>
<json:string>mole fraction</json:string>
<json:string>different values</json:string>
<json:string>condensation temperature</json:string>
<json:string>solid solution</json:string>
<json:string>reference temperature</json:string>
<json:string>disc</json:string>
<json:string>maximum amount</json:string>
<json:string>previous work</json:string>
<json:string>regular solution</json:string>
<json:string>stable compound</json:string>
<json:string>metallurgical materials trans</json:string>
<json:string>bottom panel</json:string>
<json:string>middle panel</json:string>
<json:string>total number</json:string>
<json:string>lower temperatures</json:string>
<json:string>nafziger muan</json:string>
<json:string>supplemental calculator</json:string>
<json:string>good agreement</json:string>
<json:string>caal2 sio6</json:string>
<json:string>protoplanetary disc</json:string>
<json:string>entire temperature range</json:string>
<json:string>ideal behaviour</json:string>
<json:string>entire range</json:string>
<json:string>yoneda</json:string>
<json:string>simulation</json:string>
<json:string>compound</json:string>
<json:string>results show</json:string>
<json:string>olivine phase</json:string>
<json:string>plagioclase solution</json:string>
<json:string>reaction rates</json:string>
<json:string>byerley takebe</json:string>
<json:string>mole fractions</json:string>
<json:string>high temperatures</json:string>
<json:string>energy minimization method</json:string>
<json:string>initial composition</json:string>
<json:string>melilite phase</json:string>
<json:string>lower temperature</json:string>
<json:string>physical chemistry</json:string>
<json:string>fitting polynomials</json:string>
<json:string>previous works</json:string>
<json:string>olivine species</json:string>
<json:string>protoplanetary disc phase</json:string>
<json:string>young stars</json:string>
<json:string>large range</json:string>
<json:string>condensation processes</json:string>
<json:string>solid phases</json:string>
<json:string>protoplanetary dust figure</json:string>
<json:string>ideal solution models</json:string>
<json:string>allende prieto</json:string>
<json:string>full list</json:string>
<json:string>liquid phase</json:string>
<json:string>lower limit</json:string>
<json:string>warmer region</json:string>
<json:string>energy minimization</json:string>
<json:string>high temperature</json:string>
<json:string>thermodynamic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>F. C. Pignatale</name>
<affiliations>
<json:string>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</json:string>
<json:string>E-mail: fpignatale@astro.swin.edu.au</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. T. Maddison</name>
<affiliations>
<json:string>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</json:string>
<json:string>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. Taquet</name>
<affiliations>
<json:string>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</json:string>
<json:string>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</json:string>
<json:string>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Brooks</name>
<affiliations>
<json:string>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Liffman</name>
<affiliations>
<json:string>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>astrochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>protoplanetary discs</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>circumstellar matter</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stars: pre‐main sequence</value>
</json:item>
</subject>
<articleId>
<json:string>MNR18555</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-DHWVH9N9-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>346</abstractWordCount>
<abstractCharCount>2331</abstractCharCount>
<keywordCount>4</keywordCount>
<score>10</score>
<pdfWordCount>13595</pdfWordCount>
<pdfCharCount>76478</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>20</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
</qualityIndicators>
<title>The effect of the regular solution model in the condensation of protoplanetary dust</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>414</volume>
<issue>3</issue>
<pages>
<first>2386</first>
<last>2405</last>
<total>20</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>1394</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>CO, CO</json:string>
<json:string>Swinburne University</json:string>
<json:string>SiO, CO</json:string>
<json:string>Ti, Co</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>G. Brooks</json:string>
<json:string>Grant Scheme</json:string>
<json:string>F. C. Pignatale</json:string>
<json:string>Joseph Fourier</json:string>
<json:string>K. Table</json:string>
<json:string>K. Liffman</json:string>
<json:string>Fe</json:string>
<json:string>Al Ar</json:string>
<json:string>S. T. Maddison</json:string>
<json:string>K. Fig</json:string>
<json:string>K. Data</json:string>
<json:string>K. Polynomials</json:string>
</persName>
<placeName>
<json:string>Australia</json:string>
<json:string>Grenoble</json:string>
<json:string>France</json:string>
</placeName>
<ref_url>
<json:string>http://www.outotec.com</json:string>
</ref_url>
<ref_bibl>
<json:string>Bouwman et al. 2008</json:string>
<json:string>Pollack et al. 1994</json:string>
<json:string>Haisch, Lada & Lada 2001</json:string>
<json:string>Grossman (1995)</json:string>
<json:string>Olofsson et al. 2009</json:string>
<json:string>P. D’Alessio et al. (1998)</json:string>
<json:string>Krot et al. 2005</json:string>
<json:string>Brownlee et al. 2003</json:string>
<json:string>Kessler-Silacci et al. 2006</json:string>
<json:string>Asplund et al. (2009)</json:string>
<json:string>Pasek et al. (2005)</json:string>
<json:string>Nakamura et al. 2008</json:string>
<json:string>Gail (1998)</json:string>
<json:string>Meeus et al. (2009)</json:string>
<json:string>MacPherson 2006</json:string>
<json:string>1998, 2004</json:string>
<json:string>Scott & Krot 2005</json:string>
<json:string>Charlu et al. (1981)</json:string>
<json:string>Birnstiel, Dullemond & Brauer 2010</json:string>
<json:string>Pasek et al. 2005</json:string>
<json:string>Imae 1993</json:string>
<json:string>Dullemond et al. 2008</json:string>
<json:string>Henning & Meeus 2011</json:string>
<json:string>Roine 2007</json:string>
<json:string>Scott 2007</json:string>
<json:string>Benisek et al. (2007)</json:string>
<json:string>Toppani et al. (2006)</json:string>
<json:string>Sasselov & Lecar 2000</json:string>
<json:string>Pollack et al. (1994)</json:string>
<json:string>Nafziger & Muan 1967</json:string>
<json:string>Alessio et al. (1998)</json:string>
<json:string>Conard et al. (1979)</json:string>
<json:string>Beckett (1994)</json:string>
<json:string>Hack 1996</json:string>
<json:string>Newton et al. (1980)</json:string>
<json:string>DeHoff 1993</json:string>
<json:string>Zolensky et al. 2006</json:string>
<json:string>Walbaum (1973)</json:string>
<json:string>Gail (2004)</json:string>
<json:string>Brownlee 2005</json:string>
<json:string>Gail 1998</json:string>
<json:string>Carpenter et al. 2005</json:string>
<json:string>Gemmi et al. (2007)</json:string>
<json:string>Bergin 2011</json:string>
<json:string>Nakamura et al. (2007)</json:string>
<json:string>Geers et al. 2006</json:string>
<json:string>Porter & Easterling 1992</json:string>
<json:string>F. C. Pignatale et al.</json:string>
<json:string>Alessio et al. 1998, 1999, 2004</json:string>
<json:string>Meeus et al. 2009</json:string>
<json:string>K. Schegerer et al. (2006)</json:string>
<json:string>Liffman 2006</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-DHWVH9N9-X</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2011.18555.x</json:string>
</doi>
<id>2A1170F20766901277FE3DCC9E2F285727B41128</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">The effect of the regular solution model in the condensation of protoplanetary dust</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</licence>
</availability>
<date type="published" when="2011-07-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<title level="a" type="short">The condensation of protoplanetary dust</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">F. C.</forename>
<surname>Pignatale</surname>
</persName>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>E‐mail: fpignatale@astro.swin.edu.au</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">S. T.</forename>
<surname>Maddison</surname>
</persName>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">V.</forename>
<surname>Taquet</surname>
</persName>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">G.</forename>
<surname>Brooks</surname>
</persName>
<affiliation>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">K.</forename>
<surname>Liffman</surname>
</persName>
<affiliation>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">2A1170F20766901277FE3DCC9E2F285727B41128</idno>
<idno type="ark">ark:/67375/WNG-DHWVH9N9-X</idno>
<idno type="DOI">10.1111/j.1365-2966.2011.18555.x</idno>
<idno type="unit">MNR18555</idno>
<idno type="toTypesetVersion">file:MNR.MNR18555.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2011.414.issue-3</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">414</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="2386">2386</biblScope>
<biblScope unit="page" to="2405">2405</biblScope>
<biblScope unit="page-count">20</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-07-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc.</p>
<p>Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (
<hi rend="italic">T</hi>
≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg
<hi rend="subscript">2</hi>
SiO
<hi rend="subscript">4</hi>
and MgSiO
<hi rend="subscript">3</hi>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (
<hi rend="italic">T</hi>
≤ 600 K), a range of iron compounds (FeS, Fe
<hi rend="subscript">2</hi>
SiO
<hi rend="subscript">3</hi>
, FeAl
<hi rend="subscript">2</hi>
O
<hi rend="subscript">3</hi>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases.</p>
<p>We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature.</p>
<p>Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">astrochemistry</term>
<term xml:id="k2">protoplanetary discs</term>
<term xml:id="k3">circumstellar matter</term>
<term xml:id="k4">stars: pre‐main sequence</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="07103">
<doi origin="wiley">10.1111/mnr.2011.414.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="414">414</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2011-07-01">July 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="45" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2011.18555.x</doi>
<idGroup>
<id type="unit" value="MNR18555"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.5.2 mode:FullText" date="2011-06-21"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-04-07"></event>
<event type="firstOnline" date="2011-04-07"></event>
<event type="publishedOnlineFinalForm" date="2011-06-21"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2386">2386</numbering>
<numbering type="pageLast" number="2405">2405</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>fpignatale@astro.swin.edu.au</email>
</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendices</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR18555.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 22</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="14"></count>
<count type="tableTotal" number="10"></count>
<count type="formulaTotal" number="86"></count>
<count type="referenceTotal" number="73"></count>
<count type="linksCrossRef" number="295"></count>
</countGroup>
<titleGroup>
<title type="main">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<title type="shortAuthors">
<i>F. C. Pignatale et al.</i>
</title>
<title type="short">
<i>The condensation of protoplanetary dust</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>F. C.</givenNames>
<familyName>Pignatale</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1 #a2">
<personName>
<givenNames>S. T.</givenNames>
<familyName>Maddison</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1 #a2 #a3">
<personName>
<givenNames>V.</givenNames>
<familyName>Taquet</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>G.</givenNames>
<familyName>Brooks</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a5">
<personName>
<givenNames>K.</givenNames>
<familyName>Liffman</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="AU">
<unparsedAffiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR">
<unparsedAffiliation>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="AU">
<unparsedAffiliation>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="AU">
<unparsedAffiliation>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">astrochemistry</keyword>
<keyword xml:id="k2">protoplanetary discs</keyword>
<keyword xml:id="k3">circumstellar matter</keyword>
<keyword xml:id="k4">stars: pre‐main sequence</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc.</p>
<p>Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (
<i>T</i>
≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg
<sub>2</sub>
SiO
<sub>4</sub>
and MgSiO
<sub>3</sub>
. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (
<i>T</i>
≤ 600 K), a range of iron compounds (FeS, Fe
<sub>2</sub>
SiO
<sub>3</sub>
, FeAl
<sub>2</sub>
O
<sub>3</sub>
) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases.</p>
<p>We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature.</p>
<p>Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The effect of the regular solution model in the condensation of protoplanetary dust</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>The condensation of protoplanetary dust</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The effect of the regular solution model in the condensation of protoplanetary dust</title>
</titleInfo>
<name type="personal">
<namePart type="given">F. C.</namePart>
<namePart type="family">Pignatale</namePart>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</affiliation>
<affiliation>E-mail: fpignatale@astro.swin.edu.au</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S. T.</namePart>
<namePart type="family">Maddison</namePart>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</affiliation>
<affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.</namePart>
<namePart type="family">Taquet</namePart>
<affiliation>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia</affiliation>
<affiliation>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France</affiliation>
<affiliation>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Brooks</namePart>
<affiliation>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Liffman</namePart>
<affiliation>CSIRO/MSE, PO Box 56, Heighett, VIC 3190, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-07-01</dateIssued>
<edition>Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 22</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">14</extent>
<extent unit="tables">10</extent>
<extent unit="formulas">86</extent>
<extent unit="references">73</extent>
<extent unit="linksCrossRef">295</extent>
</physicalDescription>
<abstract lang="en">We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>astrochemistry</topic>
<topic>protoplanetary discs</topic>
<topic>circumstellar matter</topic>
<topic>stars: pre‐main sequence</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>414</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>2386</start>
<end>2405</end>
<total>20</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">2A1170F20766901277FE3DCC9E2F285727B41128</identifier>
<identifier type="ark">ark:/67375/WNG-DHWVH9N9-X</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2011.18555.x</identifier>
<identifier type="ArticleID">MNR18555</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000815 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000815 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128
   |texte=   The effect of the regular solution model in the condensation of protoplanetary dust
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024