Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet

Identifieur interne : 000774 ( Istex/Corpus ); précédent : 000773; suivant : 000775

Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet

Auteurs : L. A. J. Martin ; M. Ballèvre ; P. Boulvais ; A. Halfpenny ; O. Vanderhaeghe ; S. Duchêne ; E. Deloule

Source :

RBID : ISTEX:27E3E409BF32042F879308A8DE885F652707E6E6

English descriptors

Abstract

The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.

Url:
DOI: 10.1111/j.1525-1314.2010.00912.x

Links to Exploration step

ISTEX:27E3E409BF32042F879308A8DE885F652707E6E6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
<author>
<name sortKey="Martin, L A J" sort="Martin, L A J" uniqKey="Martin L" first="L. A. J." last="Martin">L. A. J. Martin</name>
<affiliation>
<mods:affiliation>GEMOC, Macquarie University, Sydney, NSW 2109, Australia (laure.martin@anu.edu.au)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ballevre, M" sort="Ballevre, M" uniqKey="Ballevre M" first="M." last="Ballèvre">M. Ballèvre</name>
<affiliation>
<mods:affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boulvais, P" sort="Boulvais, P" uniqKey="Boulvais P" first="P." last="Boulvais">P. Boulvais</name>
<affiliation>
<mods:affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halfpenny, A" sort="Halfpenny, A" uniqKey="Halfpenny A" first="A." last="Halfpenny">A. Halfpenny</name>
<affiliation>
<mods:affiliation>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanderhaeghe, O" sort="Vanderhaeghe, O" uniqKey="Vanderhaeghe O" first="O." last="Vanderhaeghe">O. Vanderhaeghe</name>
<affiliation>
<mods:affiliation>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duchene, S" sort="Duchene, S" uniqKey="Duchene S" first="S." last="Duchêne">S. Duchêne</name>
<affiliation>
<mods:affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deloule, E" sort="Deloule, E" uniqKey="Deloule E" first="E." last="Deloule">E. Deloule</name>
<affiliation>
<mods:affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:27E3E409BF32042F879308A8DE885F652707E6E6</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1525-1314.2010.00912.x</idno>
<idno type="url">https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000774</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000774</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
<author>
<name sortKey="Martin, L A J" sort="Martin, L A J" uniqKey="Martin L" first="L. A. J." last="Martin">L. A. J. Martin</name>
<affiliation>
<mods:affiliation>GEMOC, Macquarie University, Sydney, NSW 2109, Australia (laure.martin@anu.edu.au)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ballevre, M" sort="Ballevre, M" uniqKey="Ballevre M" first="M." last="Ballèvre">M. Ballèvre</name>
<affiliation>
<mods:affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boulvais, P" sort="Boulvais, P" uniqKey="Boulvais P" first="P." last="Boulvais">P. Boulvais</name>
<affiliation>
<mods:affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halfpenny, A" sort="Halfpenny, A" uniqKey="Halfpenny A" first="A." last="Halfpenny">A. Halfpenny</name>
<affiliation>
<mods:affiliation>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanderhaeghe, O" sort="Vanderhaeghe, O" uniqKey="Vanderhaeghe O" first="O." last="Vanderhaeghe">O. Vanderhaeghe</name>
<affiliation>
<mods:affiliation>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duchene, S" sort="Duchene, S" uniqKey="Duchene S" first="S." last="Duchêne">S. Duchêne</name>
<affiliation>
<mods:affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deloule, E" sort="Deloule, E" uniqKey="Deloule E" first="E." last="Deloule">E. Deloule</name>
<affiliation>
<mods:affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Metamorphic Geology</title>
<title level="j" type="alt">JOURNAL OF METAMORPHIC GEOLOGY</title>
<idno type="ISSN">0263-4929</idno>
<idno type="eISSN">1525-1314</idno>
<imprint>
<biblScope unit="vol">29</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="213">213</biblScope>
<biblScope unit="page" to="231">231</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-02">2011-02</date>
</imprint>
<idno type="ISSN">0263-4929</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0263-4929</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Almandine</term>
<term>American mineralogist</term>
<term>Backscattered electron</term>
<term>Biotite</term>
<term>Blackwell publishing</term>
<term>Chemical geology</term>
<term>Chlorite</term>
<term>Concentric zoning</term>
<term>Cosmochimica acta</term>
<term>Crystallographic planes</term>
<term>Detection limit</term>
<term>Dissolution</term>
<term>Ebsd</term>
<term>Equilibration</term>
<term>External shape</term>
<term>Foliation</term>
<term>Garnet</term>
<term>Garnet composition</term>
<term>Garnet core</term>
<term>Garnet cores</term>
<term>Garnet crystals</term>
<term>Garnet dissolution</term>
<term>Garnet grain</term>
<term>Garnet grains</term>
<term>Garnet growth</term>
<term>Garnet rims</term>
<term>Garnet zoning</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>Growth zoning</term>
<term>Ikaria</term>
<term>Ikaria island</term>
<term>Inclusion</term>
<term>Inclusion alignment</term>
<term>Inclusion alignments</term>
<term>Intracrystalline diffusion</term>
<term>Isopleth</term>
<term>Isotope</term>
<term>Kyanite</term>
<term>Major element</term>
<term>Major elements</term>
<term>Matrix</term>
<term>Metamorphic</term>
<term>Metamorphic geology</term>
<term>Metamorphic rocks</term>
<term>Metamorphism</term>
<term>Metapelite</term>
<term>Mica</term>
<term>Mineralogical magazine</term>
<term>Mineralogist</term>
<term>Outer rims</term>
<term>Oxygen isotope</term>
<term>Oxygen isotope composition</term>
<term>Oxygen isotope fractionation</term>
<term>Oxygen isotope zoning</term>
<term>Oxygen isotopes</term>
<term>Paragonite</term>
<term>Petrology</term>
<term>Photomicrograph</term>
<term>Plagioclase</term>
<term>Porosity</term>
<term>Precursor</term>
<term>Prograde</term>
<term>Prograde path</term>
<term>Pseudosection</term>
<term>Putnis</term>
<term>Pyrope</term>
<term>Quartz</term>
<term>Reprecipitation</term>
<term>Retrograde path</term>
<term>Spessartine</term>
<term>Spessartine component</term>
<term>Spessartine content</term>
<term>Staurolite</term>
<term>Temperature peak</term>
<term>Textural</term>
<term>Thin section</term>
<term>White mica</term>
<term>Whole rock</term>
<term>Zheng</term>
<term>Zircon</term>
<term>Zoning</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Almandine</term>
<term>American mineralogist</term>
<term>Backscattered electron</term>
<term>Biotite</term>
<term>Blackwell publishing</term>
<term>Chemical geology</term>
<term>Chlorite</term>
<term>Concentric zoning</term>
<term>Cosmochimica acta</term>
<term>Crystallographic planes</term>
<term>Detection limit</term>
<term>Dissolution</term>
<term>Ebsd</term>
<term>Equilibration</term>
<term>External shape</term>
<term>Foliation</term>
<term>Garnet</term>
<term>Garnet composition</term>
<term>Garnet core</term>
<term>Garnet cores</term>
<term>Garnet crystals</term>
<term>Garnet dissolution</term>
<term>Garnet grain</term>
<term>Garnet grains</term>
<term>Garnet growth</term>
<term>Garnet rims</term>
<term>Garnet zoning</term>
<term>Grossular</term>
<term>Grossular content</term>
<term>Growth zoning</term>
<term>Ikaria</term>
<term>Ikaria island</term>
<term>Inclusion</term>
<term>Inclusion alignment</term>
<term>Inclusion alignments</term>
<term>Intracrystalline diffusion</term>
<term>Isopleth</term>
<term>Isotope</term>
<term>Kyanite</term>
<term>Major element</term>
<term>Major elements</term>
<term>Matrix</term>
<term>Metamorphic</term>
<term>Metamorphic geology</term>
<term>Metamorphic rocks</term>
<term>Metamorphism</term>
<term>Metapelite</term>
<term>Mica</term>
<term>Mineralogical magazine</term>
<term>Mineralogist</term>
<term>Outer rims</term>
<term>Oxygen isotope</term>
<term>Oxygen isotope composition</term>
<term>Oxygen isotope fractionation</term>
<term>Oxygen isotope zoning</term>
<term>Oxygen isotopes</term>
<term>Paragonite</term>
<term>Petrology</term>
<term>Photomicrograph</term>
<term>Plagioclase</term>
<term>Porosity</term>
<term>Precursor</term>
<term>Prograde</term>
<term>Prograde path</term>
<term>Pseudosection</term>
<term>Putnis</term>
<term>Pyrope</term>
<term>Quartz</term>
<term>Reprecipitation</term>
<term>Retrograde path</term>
<term>Spessartine</term>
<term>Spessartine component</term>
<term>Spessartine content</term>
<term>Staurolite</term>
<term>Temperature peak</term>
<term>Textural</term>
<term>Thin section</term>
<term>White mica</term>
<term>Whole rock</term>
<term>Zheng</term>
<term>Zircon</term>
<term>Zoning</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>garnet</json:string>
<json:string>isotope</json:string>
<json:string>spessartine</json:string>
<json:string>biotite</json:string>
<json:string>garnet crystals</json:string>
<json:string>grossular</json:string>
<json:string>textural</json:string>
<json:string>blackwell publishing</json:string>
<json:string>metapelite</json:string>
<json:string>plagioclase</json:string>
<json:string>staurolite</json:string>
<json:string>putnis</json:string>
<json:string>mineralogist</json:string>
<json:string>american mineralogist</json:string>
<json:string>metamorphic</json:string>
<json:string>ebsd</json:string>
<json:string>metamorphism</json:string>
<json:string>petrology</json:string>
<json:string>prograde</json:string>
<json:string>pyrope</json:string>
<json:string>kyanite</json:string>
<json:string>zircon</json:string>
<json:string>isopleth</json:string>
<json:string>quartz</json:string>
<json:string>inclusion</json:string>
<json:string>temperature peak</json:string>
<json:string>garnet rims</json:string>
<json:string>garnet growth</json:string>
<json:string>zheng</json:string>
<json:string>white mica</json:string>
<json:string>garnet core</json:string>
<json:string>inclusion alignments</json:string>
<json:string>matrix</json:string>
<json:string>mica</json:string>
<json:string>ikaria</json:string>
<json:string>oxygen isotopes</json:string>
<json:string>precursor</json:string>
<json:string>metamorphic geology</json:string>
<json:string>reprecipitation</json:string>
<json:string>pseudosection</json:string>
<json:string>garnet cores</json:string>
<json:string>equilibration</json:string>
<json:string>retrograde path</json:string>
<json:string>external shape</json:string>
<json:string>major element</json:string>
<json:string>chlorite</json:string>
<json:string>paragonite</json:string>
<json:string>foliation</json:string>
<json:string>almandine</json:string>
<json:string>spessartine content</json:string>
<json:string>growth zoning</json:string>
<json:string>cosmochimica acta</json:string>
<json:string>oxygen isotope zoning</json:string>
<json:string>prograde path</json:string>
<json:string>oxygen isotope</json:string>
<json:string>porosity</json:string>
<json:string>major elements</json:string>
<json:string>metamorphic rocks</json:string>
<json:string>inclusion alignment</json:string>
<json:string>outer rims</json:string>
<json:string>garnet grains</json:string>
<json:string>zoning</json:string>
<json:string>ikaria island</json:string>
<json:string>mineralogical magazine</json:string>
<json:string>chemical geology</json:string>
<json:string>garnet zoning</json:string>
<json:string>garnet dissolution</json:string>
<json:string>garnet composition</json:string>
<json:string>thin section</json:string>
<json:string>grossular content</json:string>
<json:string>backscattered electron</json:string>
<json:string>intracrystalline diffusion</json:string>
<json:string>spessartine component</json:string>
<json:string>crystallographic planes</json:string>
<json:string>oxygen isotope composition</json:string>
<json:string>concentric zoning</json:string>
<json:string>whole rock</json:string>
<json:string>detection limit</json:string>
<json:string>oxygen isotope fractionation</json:string>
<json:string>garnet grain</json:string>
<json:string>dissolution</json:string>
<json:string>photomicrograph</json:string>
<json:string>reaction interface</json:string>
<json:string>matrix effects</json:string>
<json:string>garnet standards</json:string>
<json:string>inner rims</json:string>
<json:string>path construction</json:string>
<json:string>chemical composition</json:string>
<json:string>ebsd measurements</json:string>
<json:string>putnis mezger</json:string>
<json:string>acceleration voltage</json:string>
<json:string>major element composition</json:string>
<json:string>precursor garnet</json:string>
<json:string>garnet compositions</json:string>
<json:string>open system</json:string>
<json:string>stable isotope geochemistry</json:string>
<json:string>analytical session</json:string>
<json:string>grossular component</json:string>
<json:string>holland powell</json:string>
<json:string>rim</json:string>
<json:string>isotopic</json:string>
<json:string>blackwell</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>L. A. J. MARTIN</name>
<affiliations>
<json:string>GEMOC, Macquarie University, Sydney, NSW 2109, Australia (laure.martin@anu.edu.au)</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. BALLÈVRE</name>
<affiliations>
<json:string>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. BOULVAIS</name>
<affiliations>
<json:string>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. HALFPENNY</name>
<affiliations>
<json:string>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>O. VANDERHAEGHE</name>
<affiliations>
<json:string>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. DUCHÊNE</name>
<affiliations>
<json:string>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. DELOULE</name>
<affiliations>
<json:string>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>coupled dissolution–reprecipitation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>EBSD</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>garnet zoning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>oxygen isotopes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>porosity</value>
</json:item>
</subject>
<articleId>
<json:string>JMG912</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-0HDR2BG6-V</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (>10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 > T > 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>376</abstractWordCount>
<abstractCharCount>2488</abstractCharCount>
<keywordCount>5</keywordCount>
<score>10</score>
<pdfWordCount>10610</pdfWordCount>
<pdfCharCount>68367</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>19</pdfPageCount>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
</qualityIndicators>
<title>Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Metamorphic Geology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1525-1314</json:string>
</doi>
<issn>
<json:string>0263-4929</json:string>
</issn>
<eissn>
<json:string>1525-1314</json:string>
</eissn>
<publisherId>
<json:string>JMG</json:string>
</publisherId>
<volume>29</volume>
<issue>2</issue>
<pages>
<first>213</first>
<last>231</last>
<total>19</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
</date>
<geogName>
<json:string>Figs</json:string>
<json:string>Ikaria Island</json:string>
</geogName>
<orgName>
<json:string>University of Basel</json:string>
<json:string>France ABSTRACT The</json:string>
<json:string>University of Rennes</json:string>
<json:string>Blackwell Publishing Ltd</json:string>
<json:string>ARC National Key Centre for Geochemical Evolution and Metallogeny</json:string>
<json:string>Macquarie University</json:string>
<json:string>Australian National University, Acton, ACT</json:string>
<json:string>University of Nancy</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>D. Mangin</json:string>
<json:string>J. Ravaux</json:string>
<json:string>D. Prior</json:string>
<json:string>Parageneses</json:string>
<json:string>C. de Capitani</json:string>
<json:string>N. Pearson</json:string>
<json:string>A. Kohler</json:string>
<json:string>J. Demange</json:string>
<json:string>Ms</json:string>
<json:string>M. Champenois</json:string>
<json:string>R. Bousquet</json:string>
<json:string>Adonis Photiades</json:string>
<json:string>C. Boiron</json:string>
<json:string>Donna Whitney</json:string>
</persName>
<placeName>
<json:string>Greece</json:string>
<json:string>Nancy</json:string>
<json:string>Australia</json:string>
<json:string>Rennes</json:string>
<json:string>France</json:string>
</placeName>
<ref_url>
<json:string>http://www.es.mq.edu.au/GEMOC/</json:string>
</ref_url>
<ref_bibl>
<json:string>calibration from Kleemann & Reinhardt, 1994</json:string>
<json:string>Kumerics et al. (2005)</json:string>
<json:string>Prior et al., 1996</json:string>
<json:string>Feenstra et al., 2007</json:string>
<json:string>Vielzeuf et al., 2005b</json:string>
<json:string>Konrad-Schmolke et al., 2006, 2008</json:string>
<json:string>Spear & Selverstone, 1983</json:string>
<json:string>Holland & Powell, 1998</json:string>
<json:string>Vernon, 2004</json:string>
<json:string>using the quartz–garnet fractionation factor of Zheng, 1993a</json:string>
<json:string>[110]</json:string>
<json:string>Smit et al., 2008</json:string>
<json:string>Martin et al., 2008</json:string>
<json:string>Chamberlain & Conrad, 1991</json:string>
<json:string>Nichols et al., 1994</json:string>
<json:string>France-Lanord et al., 1988</json:string>
<json:string>Storey & Prior, 2005</json:string>
<json:string>Zheng & Fu, 1998</json:string>
<json:string>Clayton & Mayeda, 1963</json:string>
<json:string>Vielzeuf et al., 2005a</json:string>
<json:string>Rice & Mitchell, 1991</json:string>
<json:string>Erambert & Austrheim, 1993</json:string>
<json:string>Schmidt & Olesen, 1989</json:string>
<json:string>Taylor (1967)</json:string>
<json:string>mineral abbreviations from Kretz, 1983</json:string>
<json:string>Geisler et al., 2007</json:string>
<json:string>Kohn, 1993</json:string>
<json:string>De Capitani & Brown, 1987</json:string>
<json:string>Henjes-Kunst & Okrusch, 1978</json:string>
<json:string>Mineral abbreviations from Kretz, 1983</json:string>
<json:string>Eiler et al., 1997</json:string>
<json:string>Pollok et al., 2008</json:string>
<json:string>de Bethune et al., 1975</json:string>
<json:string>characteristic distance for O diffusion in garnet is 20 lm at 650 °C during 5 Myr; Zheng & Fu, 1998</json:string>
<json:string>[112]</json:string>
<json:string>Cole et al., 2010</json:string>
<json:string>Rubatto, 2002</json:string>
<json:string>Carlson, 2006</json:string>
<json:string>Clechenko & Valley, 2003</json:string>
<json:string>Tomaschek et al., 2003</json:string>
<json:string>Putnis et al., 2005</json:string>
<json:string>Putnis & Mezger, 2004</json:string>
<json:string>Valley, 2001</json:string>
<json:string>Page et al., 2009</json:string>
<json:string>Martin et al., 2006</json:string>
<json:string>Spear, 1993</json:string>
<json:string>Whitney, 1991, 1996</json:string>
<json:string>Whitney, 1996</json:string>
<json:string>Tucillo et al., 1990</json:string>
<json:string>Vernon et al., 2008</json:string>
<json:string>Hermann & Rubatto, 2003</json:string>
<json:string>Hiroi et al., 1998</json:string>
<json:string>Henjes-Kunst, 1980</json:string>
<json:string>Parsons & Lee, 2009</json:string>
<json:string>Tinkham et al. (2001)</json:string>
<json:string>Burton, 1986</json:string>
<json:string>[111]</json:string>
<json:string>with the fractionation factor of Zheng, 1993b</json:string>
<json:string>De Capitani, 1994</json:string>
<json:string>Eiler, 2001</json:string>
<json:string>[100]</json:string>
<json:string>Lloyd, 1987</json:string>
<json:string>Kohn, 2003</json:string>
<json:string>Kumerics et al., 2005</json:string>
<json:string>Engvik et al., 2001</json:string>
<json:string>Durr et al., 1978</json:string>
<json:string>Putnis, 2002</json:string>
<json:string>Loomis, 1983</json:string>
<json:string>Whitney et al., 1996</json:string>
<json:string>Zhao et al., 2009</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-0HDR2BG6-V</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - geochemistry & geophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
<json:string>4 - radiotherapie. traitement instrumental. physiotherapie. reeducation. readaptation, orthophonie, crenotherapie. traitement dietetique et traitements divers (generalites)</json:string>
</inist>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1525-1314.2010.00912.x</json:string>
</doi>
<id>27E3E409BF32042F879308A8DE885F652707E6E6</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 Blackwell Publishing Ltd</licence>
</availability>
<date type="published" when="2011-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
<title level="a" type="short">GARNET RE‐EQUILIBRATION BY COUPLED DISSOLUTION–REPRECIPITATION</title>
<author xml:id="author-0000">
<persName>
<forename type="first">L. A. J.</forename>
<surname>MARTIN</surname>
</persName>
<affiliation>GEMOC, Macquarie University, Sydney, NSW 2109, Australia (laure.martin@anu.edu.au)
<address>
<country key="AU"></country>
</address>
</affiliation>
<email>laure.martin@anu.edu.au</email>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">M.</forename>
<surname>BALLÈVRE</surname>
</persName>
<affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">P.</forename>
<surname>BOULVAIS</surname>
</persName>
<affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">A.</forename>
<surname>HALFPENNY</surname>
</persName>
<affiliation>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">O.</forename>
<surname>VANDERHAEGHE</surname>
</persName>
<affiliation>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">S.</forename>
<surname>DUCHÊNE</surname>
</persName>
<affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">E.</forename>
<surname>DELOULE</surname>
</persName>
<affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">27E3E409BF32042F879308A8DE885F652707E6E6</idno>
<idno type="ark">ark:/67375/WNG-0HDR2BG6-V</idno>
<idno type="DOI">10.1111/j.1525-1314.2010.00912.x</idno>
<idno type="unit">JMG912</idno>
<idno type="toTypesetVersion">file:JMG.JMG912.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Metamorphic Geology</title>
<title level="j" type="alt">JOURNAL OF METAMORPHIC GEOLOGY</title>
<idno type="pISSN">0263-4929</idno>
<idno type="eISSN">1525-1314</idno>
<idno type="book-DOI">10.1111/(ISSN)1525-1314</idno>
<idno type="book-part-DOI">10.1111/jmg.2011.29.issue-2</idno>
<idno type="product">JMG</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">29</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="213">213</biblScope>
<biblScope unit="page" to="231">231</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 
<hi rend="italic">μ</hi>
m) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ
<hi rend="superscript">18</hi>
O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 
<hi rend="italic">μ</hi>
m) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ
<hi rend="superscript">18</hi>
O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 
<hi rend="italic">μ</hi>
m) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < 
<hi rend="italic">T</hi>
 < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">coupled dissolution–reprecipitation</term>
<term xml:id="k2">EBSD</term>
<term xml:id="k3">garnet zoning</term>
<term xml:id="k4">oxygen isotopes</term>
<term xml:id="k5">porosity</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1525-1314</doi>
<issn type="print">0263-4929</issn>
<issn type="electronic">1525-1314</issn>
<idGroup>
<id type="product" value="JMG"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF METAMORPHIC GEOLOGY">Journal of Metamorphic Geology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="02102">
<doi origin="wiley">10.1111/jmg.2011.29.issue-2</doi>
<numberingGroup>
<numbering type="journalVolume" number="29">29</numbering>
<numbering type="journalIssue" number="2">2</numbering>
</numberingGroup>
<coverDate startDate="2011-02">February 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="3" status="forIssue">
<doi origin="wiley">10.1111/j.1525-1314.2010.00912.x</doi>
<idGroup>
<id type="unit" value="JMG912"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original articles</title>
</titleGroup>
<copyright>© 2010 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4.4 mode:FullText" date="2011-02-01"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-10-26"></event>
<event type="firstOnline" date="2010-10-26"></event>
<event type="publishedOnlineFinalForm" date="2011-02-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="213">213</numbering>
<numbering type="pageLast" number="231">231</numbering>
</numberingGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JMG.JMG912.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 24 April 2009; revision accepted 21 September 2010.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
<title type="shortAuthors">L. A. J. MARTIN
<i>ET AL.</i>
</title>
<title type="short">GARNET RE‐EQUILIBRATION BY COUPLED DISSOLUTION–REPRECIPITATION</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>L. A. J.</givenNames>
<familyName>MARTIN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>M.</givenNames>
<familyName>BALLÈVRE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>P.</givenNames>
<familyName>BOULVAIS</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>A.</givenNames>
<familyName>HALFPENNY</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a4">
<personName>
<givenNames>O.</givenNames>
<familyName>VANDERHAEGHE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a5">
<personName>
<givenNames>S.</givenNames>
<familyName>DUCHÊNE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a5">
<personName>
<givenNames>E.</givenNames>
<familyName>DELOULE</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="AU">
<unparsedAffiliation> GEMOC, Macquarie University, Sydney, NSW 2109, Australia (
<email>laure.martin@anu.edu.au</email>
)</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="AU">
<unparsedAffiliation>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="FR">
<unparsedAffiliation>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="FR">
<unparsedAffiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">coupled dissolution–reprecipitation</keyword>
<keyword xml:id="k2">EBSD</keyword>
<keyword xml:id="k3">garnet zoning</keyword>
<keyword xml:id="k4">oxygen isotopes</keyword>
<keyword xml:id="k5">porosity</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 
<i>μ</i>
m) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ
<sup>18</sup>
O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 
<i>μ</i>
m) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ
<sup>18</sup>
O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 
<i>μ</i>
m) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < 
<i>T</i>
 < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GARNET RE‐EQUILIBRATION BY COUPLED DISSOLUTION–REPRECIPITATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet</title>
</titleInfo>
<name type="personal">
<namePart type="given">L. A. J.</namePart>
<namePart type="family">MARTIN</namePart>
<affiliation>GEMOC, Macquarie University, Sydney, NSW 2109, Australia (laure.martin@anu.edu.au)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">BALLÈVRE</namePart>
<affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">BOULVAIS</namePart>
<affiliation>Géosciences Rennes, UMR 6118 CNRS‐Université de Rennes 1, 35042 Rennes Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">HALFPENNY</namePart>
<affiliation>RSES, 61 Mills Road, Australian National University, Acton, ACT 0200, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">O.</namePart>
<namePart type="family">VANDERHAEGHE</namePart>
<affiliation>G2R, UMR‐CNRS 7566, BP 239, 54506 Vandœuvre‐lès‐Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">DUCHÊNE</namePart>
<affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">DELOULE</namePart>
<affiliation>CRPG, UPR‐CNRS 2300, BP 20, 54501 Vandœuvre‐lès‐Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-02</dateIssued>
<edition>Received 24 April 2009; revision accepted 21 September 2010.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">8</extent>
<extent unit="tables">4</extent>
</physicalDescription>
<abstract lang="en">The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>coupled dissolution–reprecipitation</topic>
<topic>EBSD</topic>
<topic>garnet zoning</topic>
<topic>oxygen isotopes</topic>
<topic>porosity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Metamorphic Geology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0263-4929</identifier>
<identifier type="eISSN">1525-1314</identifier>
<identifier type="DOI">10.1111/(ISSN)1525-1314</identifier>
<identifier type="PublisherID">JMG</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>213</start>
<end>231</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">27E3E409BF32042F879308A8DE885F652707E6E6</identifier>
<identifier type="ark">ark:/67375/WNG-0HDR2BG6-V</identifier>
<identifier type="DOI">10.1111/j.1525-1314.2010.00912.x</identifier>
<identifier type="ArticleID">JMG912</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/27E3E409BF32042F879308A8DE885F652707E6E6/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:27E3E409BF32042F879308A8DE885F652707E6E6
   |texte=   Garnet re‐equilibration by coupled dissolution–reprecipitation: evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024