Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction

Identifieur interne : 000532 ( Istex/Corpus ); précédent : 000531; suivant : 000533

Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction

Auteurs : A. Varghese ; R. Ibata ; G. F. Lewis

Source :

RBID : ISTEX:1C389159D60FED315FFEA4CC758B5A1D71712340

English descriptors

Abstract

Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.

Url:
DOI: 10.1111/j.1365-2966.2011.19097.x

Links to Exploration step

ISTEX:1C389159D60FED315FFEA4CC758B5A1D71712340

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
<author>
<name sortKey="Varghese, A" sort="Varghese, A" uniqKey="Varghese A" first="A." last="Varghese">A. Varghese</name>
<affiliation>
<mods:affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: anjali.varghese@astro.unistra.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ibata, R" sort="Ibata, R" uniqKey="Ibata R" first="R." last="Ibata">R. Ibata</name>
<affiliation>
<mods:affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, G F" sort="Lewis, G F" uniqKey="Lewis G" first="G. F." last="Lewis">G. F. Lewis</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1C389159D60FED315FFEA4CC758B5A1D71712340</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2011.19097.x</idno>
<idno type="url">https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000532</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000532</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
<author>
<name sortKey="Varghese, A" sort="Varghese, A" uniqKey="Varghese A" first="A." last="Varghese">A. Varghese</name>
<affiliation>
<mods:affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: anjali.varghese@astro.unistra.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ibata, R" sort="Ibata, R" uniqKey="Ibata R" first="R." last="Ibata">R. Ibata</name>
<affiliation>
<mods:affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, G F" sort="Lewis, G F" uniqKey="Lewis G" first="G. F." last="Lewis">G. F. Lewis</name>
<affiliation>
<mods:affiliation>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">417</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="198">198</biblScope>
<biblScope unit="page" to="215">215</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10-11">2011-10-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additional data</term>
<term>Additional information</term>
<term>Algorithm</term>
<term>Attening</term>
<term>Axisymmetric</term>
<term>Baryonic components</term>
<term>Binney</term>
<term>Binney tremaine</term>
<term>Black dots</term>
<term>Bottom panels</term>
<term>Central density</term>
<term>Certain point</term>
<term>Circular velocities</term>
<term>Circular velocity</term>
<term>Coldest chain</term>
<term>Coldest mcmc chain</term>
<term>Core radius</term>
<term>Correction mechanism</term>
<term>Corresponding distributions</term>
<term>Current position</term>
<term>Cyan</term>
<term>Cyan lines</term>
<term>Cyan squares</term>
<term>Dark halo</term>
<term>Dark halo probes</term>
<term>Dark halo probes figure</term>
<term>Dark haloes</term>
<term>Dark matter</term>
<term>Dark matter haloes</term>
<term>Data point</term>
<term>Data points</term>
<term>Degenerate</term>
<term>Dehnen</term>
<term>Dehnen binney</term>
<term>Density distribution</term>
<term>Different kinds</term>
<term>Different values</term>
<term>Disc components</term>
<term>Disc galaxies</term>
<term>Distant systems</term>
<term>Dubinski</term>
<term>Dubinski carlberg</term>
<term>Dynamical friction</term>
<term>Estimation</term>
<term>Free parameter</term>
<term>Free parameters</term>
<term>Full parameter space</term>
<term>Galactic</term>
<term>Galactic evolution</term>
<term>Galaxy</term>
<term>Gaussian distribution</term>
<term>Globular clusters</term>
<term>Good estimate</term>
<term>Green lines</term>
<term>Grey curve</term>
<term>Halo</term>
<term>Halo mass</term>
<term>Halo parameters</term>
<term>Halo shapes</term>
<term>Higher temperature chains</term>
<term>Host galaxy</term>
<term>Host halo</term>
<term>Ibata</term>
<term>Incorrect estimates</term>
<term>Individual streams</term>
<term>Infalling satellite</term>
<term>Initial coordinates</term>
<term>Initial distance</term>
<term>Initial point</term>
<term>Initial position</term>
<term>Initial positions</term>
<term>Initial velocities</term>
<term>Inner mass distribution</term>
<term>Inner power slope</term>
<term>Inner slope</term>
<term>Input value</term>
<term>Integration time</term>
<term>Irwin</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kinematic information</term>
<term>Kruit</term>
<term>Large sample</term>
<term>Lewis figure</term>
<term>Logarithmic</term>
<term>Logarithmic halo</term>
<term>Logarithmic orbits</term>
<term>Majewski</term>
<term>Many cases</term>
<term>Matter distribution</term>
<term>Maximum likelihood estimation</term>
<term>Mcmc</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Monthly notices</term>
<term>More information</term>
<term>Multidimensional parameter space</term>
<term>Multipole expansion</term>
<term>Next point</term>
<term>Orbit</term>
<term>Orbital</term>
<term>Orbital parameters</term>
<term>Other parameters</term>
<term>Outer power</term>
<term>Outer power slope</term>
<term>Parallel chains</term>
<term>Parameter</term>
<term>Parameter distributions</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Particular example</term>
<term>Past orbit</term>
<term>Pericentre passages</term>
<term>Positional information</term>
<term>Potential parameters</term>
<term>Present study</term>
<term>Present work</term>
<term>Previous section</term>
<term>Progenitor</term>
<term>Progenitor distance</term>
<term>Progenitor orbit</term>
<term>Prolate halo</term>
<term>Proposal distribution</term>
<term>Reasonable ranges</term>
<term>Rightmost panels show</term>
<term>Rotational</term>
<term>Rotational curve</term>
<term>Rotational velocity curve</term>
<term>Same point</term>
<term>Scale radius</term>
<term>Several points</term>
<term>Short stream</term>
<term>Sign discrepancy</term>
<term>Simulation</term>
<term>Single chain</term>
<term>Small variations</term>
<term>Smaller peak</term>
<term>Spatial projection</term>
<term>Spheroidal</term>
<term>Spheroidal halo</term>
<term>Spiral galaxies</term>
<term>Statistical approach</term>
<term>Stellar</term>
<term>Stellar components</term>
<term>Stellar streams</term>
<term>Stream</term>
<term>Stream data</term>
<term>Stream stars</term>
<term>Such information</term>
<term>Tail stars</term>
<term>Tangential velocity components</term>
<term>Test stream</term>
<term>Test streams</term>
<term>Thick disc</term>
<term>Thin disc</term>
<term>Tidal</term>
<term>Tidal disruption</term>
<term>Tidal stream</term>
<term>Tidal streams</term>
<term>Tidal tails</term>
<term>Total mass</term>
<term>Trial orbits</term>
<term>Trial point</term>
<term>Trial points</term>
<term>Trial stream</term>
<term>Trial streams</term>
<term>Triaxial</term>
<term>Triaxial halo</term>
<term>Triaxial models</term>
<term>True value</term>
<term>True values</term>
<term>Truncation radius</term>
<term>Tting</term>
<term>Tting data</term>
<term>Tting routines</term>
<term>Tting stream</term>
<term>Tting streams</term>
<term>Varghese</term>
<term>Velocity components</term>
<term>Velocity data points</term>
<term>Velocity information</term>
<term>Velocity space</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Additional data</term>
<term>Additional information</term>
<term>Algorithm</term>
<term>Attening</term>
<term>Axisymmetric</term>
<term>Baryonic components</term>
<term>Binney</term>
<term>Binney tremaine</term>
<term>Black dots</term>
<term>Bottom panels</term>
<term>Central density</term>
<term>Certain point</term>
<term>Circular velocities</term>
<term>Circular velocity</term>
<term>Coldest chain</term>
<term>Coldest mcmc chain</term>
<term>Core radius</term>
<term>Correction mechanism</term>
<term>Corresponding distributions</term>
<term>Current position</term>
<term>Cyan</term>
<term>Cyan lines</term>
<term>Cyan squares</term>
<term>Dark halo</term>
<term>Dark halo probes</term>
<term>Dark halo probes figure</term>
<term>Dark haloes</term>
<term>Dark matter</term>
<term>Dark matter haloes</term>
<term>Data point</term>
<term>Data points</term>
<term>Degenerate</term>
<term>Dehnen</term>
<term>Dehnen binney</term>
<term>Density distribution</term>
<term>Different kinds</term>
<term>Different values</term>
<term>Disc components</term>
<term>Disc galaxies</term>
<term>Distant systems</term>
<term>Dubinski</term>
<term>Dubinski carlberg</term>
<term>Dynamical friction</term>
<term>Estimation</term>
<term>Free parameter</term>
<term>Free parameters</term>
<term>Full parameter space</term>
<term>Galactic</term>
<term>Galactic evolution</term>
<term>Galaxy</term>
<term>Gaussian distribution</term>
<term>Globular clusters</term>
<term>Good estimate</term>
<term>Green lines</term>
<term>Grey curve</term>
<term>Halo</term>
<term>Halo mass</term>
<term>Halo parameters</term>
<term>Halo shapes</term>
<term>Higher temperature chains</term>
<term>Host galaxy</term>
<term>Host halo</term>
<term>Ibata</term>
<term>Incorrect estimates</term>
<term>Individual streams</term>
<term>Infalling satellite</term>
<term>Initial coordinates</term>
<term>Initial distance</term>
<term>Initial point</term>
<term>Initial position</term>
<term>Initial positions</term>
<term>Initial velocities</term>
<term>Inner mass distribution</term>
<term>Inner power slope</term>
<term>Inner slope</term>
<term>Input value</term>
<term>Integration time</term>
<term>Irwin</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Kinematic information</term>
<term>Kruit</term>
<term>Large sample</term>
<term>Lewis figure</term>
<term>Logarithmic</term>
<term>Logarithmic halo</term>
<term>Logarithmic orbits</term>
<term>Majewski</term>
<term>Many cases</term>
<term>Matter distribution</term>
<term>Maximum likelihood estimation</term>
<term>Mcmc</term>
<term>Mnras</term>
<term>Model parameters</term>
<term>Monthly notices</term>
<term>More information</term>
<term>Multidimensional parameter space</term>
<term>Multipole expansion</term>
<term>Next point</term>
<term>Orbit</term>
<term>Orbital</term>
<term>Orbital parameters</term>
<term>Other parameters</term>
<term>Outer power</term>
<term>Outer power slope</term>
<term>Parallel chains</term>
<term>Parameter</term>
<term>Parameter distributions</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Particular example</term>
<term>Past orbit</term>
<term>Pericentre passages</term>
<term>Positional information</term>
<term>Potential parameters</term>
<term>Present study</term>
<term>Present work</term>
<term>Previous section</term>
<term>Progenitor</term>
<term>Progenitor distance</term>
<term>Progenitor orbit</term>
<term>Prolate halo</term>
<term>Proposal distribution</term>
<term>Reasonable ranges</term>
<term>Rightmost panels show</term>
<term>Rotational</term>
<term>Rotational curve</term>
<term>Rotational velocity curve</term>
<term>Same point</term>
<term>Scale radius</term>
<term>Several points</term>
<term>Short stream</term>
<term>Sign discrepancy</term>
<term>Simulation</term>
<term>Single chain</term>
<term>Small variations</term>
<term>Smaller peak</term>
<term>Spatial projection</term>
<term>Spheroidal</term>
<term>Spheroidal halo</term>
<term>Spiral galaxies</term>
<term>Statistical approach</term>
<term>Stellar</term>
<term>Stellar components</term>
<term>Stellar streams</term>
<term>Stream</term>
<term>Stream data</term>
<term>Stream stars</term>
<term>Such information</term>
<term>Tail stars</term>
<term>Tangential velocity components</term>
<term>Test stream</term>
<term>Test streams</term>
<term>Thick disc</term>
<term>Thin disc</term>
<term>Tidal</term>
<term>Tidal disruption</term>
<term>Tidal stream</term>
<term>Tidal streams</term>
<term>Tidal tails</term>
<term>Total mass</term>
<term>Trial orbits</term>
<term>Trial point</term>
<term>Trial points</term>
<term>Trial stream</term>
<term>Trial streams</term>
<term>Triaxial</term>
<term>Triaxial halo</term>
<term>Triaxial models</term>
<term>True value</term>
<term>True values</term>
<term>Truncation radius</term>
<term>Tting</term>
<term>Tting data</term>
<term>Tting routines</term>
<term>Tting stream</term>
<term>Tting streams</term>
<term>Varghese</term>
<term>Velocity components</term>
<term>Velocity data points</term>
<term>Velocity information</term>
<term>Velocity space</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>progenitor</json:string>
<json:string>tting</json:string>
<json:string>attening</json:string>
<json:string>mnras</json:string>
<json:string>halo</json:string>
<json:string>logarithmic</json:string>
<json:string>ibata</json:string>
<json:string>mcmc</json:string>
<json:string>parameter space</json:string>
<json:string>monthly notices</json:string>
<json:string>stellar streams</json:string>
<json:string>binney</json:string>
<json:string>spheroidal</json:string>
<json:string>tidal</json:string>
<json:string>circular velocity</json:string>
<json:string>rotational</json:string>
<json:string>kinematic</json:string>
<json:string>triaxial</json:string>
<json:string>dehnen</json:string>
<json:string>host galaxy</json:string>
<json:string>stellar</json:string>
<json:string>degenerate</json:string>
<json:string>varghese</json:string>
<json:string>correction mechanism</json:string>
<json:string>input value</json:string>
<json:string>coldest mcmc chain</json:string>
<json:string>majewski</json:string>
<json:string>tidal tails</json:string>
<json:string>galaxy</json:string>
<json:string>parameter</json:string>
<json:string>potential parameters</json:string>
<json:string>cyan</json:string>
<json:string>rotational velocity curve</json:string>
<json:string>axisymmetric</json:string>
<json:string>kruit</json:string>
<json:string>tidal streams</json:string>
<json:string>dubinski</json:string>
<json:string>algorithm</json:string>
<json:string>kinematic information</json:string>
<json:string>circular velocities</json:string>
<json:string>sign discrepancy</json:string>
<json:string>dark halo probes</json:string>
<json:string>orbital parameters</json:string>
<json:string>test streams</json:string>
<json:string>more information</json:string>
<json:string>logarithmic halo</json:string>
<json:string>velocity components</json:string>
<json:string>spheroidal halo</json:string>
<json:string>trial stream</json:string>
<json:string>proposal distribution</json:string>
<json:string>trial point</json:string>
<json:string>lewis figure</json:string>
<json:string>density distribution</json:string>
<json:string>halo parameters</json:string>
<json:string>true value</json:string>
<json:string>central density</json:string>
<json:string>halo shapes</json:string>
<json:string>host halo</json:string>
<json:string>matter distribution</json:string>
<json:string>true values</json:string>
<json:string>dehnen binney</json:string>
<json:string>kinematic data</json:string>
<json:string>tidal stream</json:string>
<json:string>dynamical friction</json:string>
<json:string>different values</json:string>
<json:string>positional information</json:string>
<json:string>next point</json:string>
<json:string>smaller peak</json:string>
<json:string>inner slope</json:string>
<json:string>scale radius</json:string>
<json:string>stream stars</json:string>
<json:string>progenitor orbit</json:string>
<json:string>data point</json:string>
<json:string>bottom panels</json:string>
<json:string>galactic</json:string>
<json:string>simulation</json:string>
<json:string>irwin</json:string>
<json:string>orbit</json:string>
<json:string>dark matter</json:string>
<json:string>coldest chain</json:string>
<json:string>rotational curve</json:string>
<json:string>dark halo</json:string>
<json:string>trial streams</json:string>
<json:string>initial point</json:string>
<json:string>data points</json:string>
<json:string>binney tremaine</json:string>
<json:string>short stream</json:string>
<json:string>core radius</json:string>
<json:string>initial positions</json:string>
<json:string>full parameter space</json:string>
<json:string>globular clusters</json:string>
<json:string>test stream</json:string>
<json:string>free parameter</json:string>
<json:string>tting streams</json:string>
<json:string>current position</json:string>
<json:string>past orbit</json:string>
<json:string>integration time</json:string>
<json:string>tting routines</json:string>
<json:string>thick disc</json:string>
<json:string>inner power slope</json:string>
<json:string>tting data</json:string>
<json:string>orbital</json:string>
<json:string>estimation</json:string>
<json:string>stream</json:string>
<json:string>multipole expansion</json:string>
<json:string>additional information</json:string>
<json:string>same point</json:string>
<json:string>many cases</json:string>
<json:string>present study</json:string>
<json:string>stream data</json:string>
<json:string>logarithmic orbits</json:string>
<json:string>higher temperature chains</json:string>
<json:string>initial velocities</json:string>
<json:string>parallel chains</json:string>
<json:string>incorrect estimates</json:string>
<json:string>spatial projection</json:string>
<json:string>initial distance</json:string>
<json:string>triaxial models</json:string>
<json:string>triaxial halo</json:string>
<json:string>dark haloes</json:string>
<json:string>progenitor distance</json:string>
<json:string>large sample</json:string>
<json:string>pericentre passages</json:string>
<json:string>infalling satellite</json:string>
<json:string>maximum likelihood estimation</json:string>
<json:string>tidal disruption</json:string>
<json:string>dark halo probes figure</json:string>
<json:string>disc galaxies</json:string>
<json:string>parameter values</json:string>
<json:string>certain point</json:string>
<json:string>truncation radius</json:string>
<json:string>dubinski carlberg</json:string>
<json:string>small variations</json:string>
<json:string>gaussian distribution</json:string>
<json:string>parameter distributions</json:string>
<json:string>model parameters</json:string>
<json:string>tail stars</json:string>
<json:string>galactic evolution</json:string>
<json:string>trial orbits</json:string>
<json:string>several points</json:string>
<json:string>total mass</json:string>
<json:string>black dots</json:string>
<json:string>grey curve</json:string>
<json:string>velocity space</json:string>
<json:string>initial position</json:string>
<json:string>single chain</json:string>
<json:string>initial coordinates</json:string>
<json:string>thin disc</json:string>
<json:string>spiral galaxies</json:string>
<json:string>disc components</json:string>
<json:string>baryonic components</json:string>
<json:string>inner mass distribution</json:string>
<json:string>distant systems</json:string>
<json:string>previous section</json:string>
<json:string>additional data</json:string>
<json:string>prolate halo</json:string>
<json:string>free parameters</json:string>
<json:string>outer power slope</json:string>
<json:string>other parameters</json:string>
<json:string>reasonable ranges</json:string>
<json:string>tting stream</json:string>
<json:string>present work</json:string>
<json:string>different kinds</json:string>
<json:string>halo mass</json:string>
<json:string>tangential velocity components</json:string>
<json:string>particular example</json:string>
<json:string>corresponding distributions</json:string>
<json:string>dark matter haloes</json:string>
<json:string>cyan lines</json:string>
<json:string>statistical approach</json:string>
<json:string>velocity information</json:string>
<json:string>stellar components</json:string>
<json:string>green lines</json:string>
<json:string>outer power</json:string>
<json:string>good estimate</json:string>
<json:string>velocity data points</json:string>
<json:string>rightmost panels show</json:string>
<json:string>such information</json:string>
<json:string>multidimensional parameter space</json:string>
<json:string>individual streams</json:string>
<json:string>cyan squares</json:string>
<json:string>trial points</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>A. Varghese</name>
<affiliations>
<json:string>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</json:string>
<json:string>E-mail: anjali.varghese@astro.unistra.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Ibata</name>
<affiliations>
<json:string>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. F. Lewis</name>
<affiliations>
<json:string>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gravitation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dark matter</value>
</json:item>
</subject>
<articleId>
<json:string>MNR19097</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-D70TLXN3-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.</abstract>
<qualityIndicators>
<score>9.088</score>
<pdfWordCount>12411</pdfWordCount>
<pdfCharCount>65734</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>174</abstractWordCount>
<abstractCharCount>1067</abstractCharCount>
<keywordCount>2</keywordCount>
</qualityIndicators>
<title>Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>417</volume>
<issue>1</issue>
<pages>
<first>198</first>
<last>215</last>
<total>18</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Sydney</json:string>
<json:string>Australia Accepted</json:string>
<json:string>Australian Research Council</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Mustapha Mouhcine</json:string>
<json:string>R. Ibata</json:string>
<json:string>Shoko Jin</json:string>
<json:string>G. F. Lewis</json:string>
<json:string>Lewis Figure</json:string>
<json:string>Jorge Pe</json:string>
<json:string>Lewis Table</json:string>
<json:string>By</json:string>
<json:string>Walter Dehnen</json:string>
<json:string>A. Varghese</json:string>
<json:string>Peter Teuben</json:string>
</persName>
<placeName>
<json:string>Strasbourg</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Majewski et al. 2003</json:string>
<json:string>Debattista et al. 2008</json:string>
<json:string>Binney & Tremaine 2008</json:string>
<json:string>Ibata et al. 2001a</json:string>
<json:string>Frenk et al. 1988</json:string>
<json:string>Springel & White 1999</json:string>
<json:string>Eyre & Binney 2009a,b</json:string>
<json:string>Read & Moore 2005</json:string>
<json:string>Odenkirchen et al. 2003</json:string>
<json:string>Navarro, Frenk & White 1996</json:string>
<json:string>Dehnen 2000, 2002</json:string>
<json:string>Kazantzidis, Abadi & Navarro 2010</json:string>
<json:string>Grillmair & Dionatos 2006</json:string>
<json:string>Allgood et al. (2006)</json:string>
<json:string>Hoekstra, Yee & Gladders 2004</json:string>
<json:string>Ibata et al. 2001a, 2004</json:string>
<json:string>White & Rees 1978</json:string>
<json:string>Combes 2006</json:string>
<json:string>Mayer et al. 2002</json:string>
<json:string>Mayer et al. (2002)</json:string>
<json:string>Gregory 2005</json:string>
<json:string>Lux 2010</json:string>
<json:string>Helmi (2004)</json:string>
<json:string>Jing & Suto 2002</json:string>
<json:string>Odenkirchen et al. 2001</json:string>
<json:string>Bailin & Steinmetz 2005</json:string>
<json:string>Teuben 1995</json:string>
<json:string>Belokurov et al. 2007</json:string>
<json:string>Mandelbaum et al. 2006</json:string>
<json:string>Conn et al. 2005, 2007, 2008</json:string>
<json:string>McConnachie et al. 2004</json:string>
<json:string>Iodice et al. 2003</json:string>
<json:string>Kuijken & Gilmore 1989</json:string>
<json:string>Dehnen & Binney 1998</json:string>
<json:string>Bullock 2002</json:string>
<json:string>Dubinski, Mihos & Hernquist 1999</json:string>
<json:string>Delgado et al. 2008</json:string>
<json:string>Dubinski 1994</json:string>
<json:string>Sackett et al. 1994</json:string>
<json:string>Brien et al.</json:string>
<json:string>Newberg et al. 2002</json:string>
<json:string>Ibata et al. 2001b</json:string>
<json:string>Bett et al. 2007</json:string>
<json:string>Grillmair 2006</json:string>
<json:string>Aparicio (2002)</json:string>
<json:string>Mackey et al. 2010</json:string>
<json:string>Delgado et al.</json:string>
<json:string>Law & Majewski 2010</json:string>
<json:string>Carlberg et al. 2011</json:string>
<json:string>Dubinski & Carlberg 1991</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-D70TLXN3-X</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2011.19097.x</json:string>
</doi>
<id>1C389159D60FED315FFEA4CC758B5A1D71712340</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</licence>
</availability>
<date type="published" when="2011-10-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
<title level="a" type="short">Stellar streams as dark halo probes</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">A.</forename>
<surname>Varghese</surname>
</persName>
<affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>E‐mail: anjali.varghese@astro.unistra.fr</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">R.</forename>
<surname>Ibata</surname>
</persName>
<affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">G. F.</forename>
<surname>Lewis</surname>
</persName>
<affiliation>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">1C389159D60FED315FFEA4CC758B5A1D71712340</idno>
<idno type="ark">ark:/67375/WNG-D70TLXN3-X</idno>
<idno type="DOI">10.1111/j.1365-2966.2011.19097.x</idno>
<idno type="unit">MNR19097</idno>
<idno type="toTypesetVersion">file:MNR.MNR19097.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2011.417.issue-1</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">417</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="198">198</biblScope>
<biblScope unit="page" to="215">215</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">gravitation</term>
<term xml:id="k2">dark matter</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10101">
<doi origin="wiley">10.1111/mnr.2011.417.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="417">417</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2011-10-11">October 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="12" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2011.19097.x</doi>
<idGroup>
<id type="unit" value="MNR19097"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.10 mode:FullText" date="2011-10-04"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-09-09"></event>
<event type="firstOnline" date="2011-09-09"></event>
<event type="publishedOnlineFinalForm" date="2011-10-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="198">198</numbering>
<numbering type="pageLast" number="215">215</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>anjali.varghese@astro.unistra.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR19097.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2011 May 17. Received 2011 May 16; in original form 2011 February 8</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="18"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="37"></count>
<count type="referenceTotal" number="63"></count>
<count type="linksCrossRef" number="139"></count>
</countGroup>
<titleGroup>
<title type="main">Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
<title type="shortAuthors">
<i>A. Varghese, R. Ibata and G. F. Lewis</i>
</title>
<title type="short">
<i>Stellar streams as dark halo probes</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>A.</givenNames>
<familyName>Varghese</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>R.</givenNames>
<familyName>Ibata</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>G. F.</givenNames>
<familyName>Lewis</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="AU">
<unparsedAffiliation>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">gravitation</keyword>
<keyword xml:id="k2">dark matter</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Stellar streams as dark halo probes</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction</title>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Varghese</namePart>
<affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</affiliation>
<affiliation>E-mail: anjali.varghese@astro.unistra.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Ibata</namePart>
<affiliation>Observatoire Astronomique de Strasbourg (UMR 7550), 11, rue de l’Université, 67000 Strasbourg, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. F.</namePart>
<namePart type="family">Lewis</namePart>
<affiliation>Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-10-11</dateIssued>
<edition>Accepted 2011 May 17. Received 2011 May 16; in original form 2011 February 8</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">18</extent>
<extent unit="tables">3</extent>
<extent unit="formulas">37</extent>
<extent unit="references">63</extent>
<extent unit="linksCrossRef">139</extent>
</physicalDescription>
<abstract lang="en">Tidal streams provide a powerful tool by means of which the matter distribution of the dark matter haloes of their host galaxies can be studied. However, the analysis is not straightforward because streams do not delineate orbits, and for most streams, especially those in external galaxies, kinematic information is absent. We present a method wherein streams are fitted with simple corrections made to possible orbits of the progenitor, using a Bayesian technique known as parallel tempering to efficiently explore the parameter space. We show that it is possible to constrain the shape of the host halo potential or its density distribution using only the projection of tidal streams on the sky, if the host halo is considered to be axisymmetric. By adding kinematic data or the circular velocity curve of the host to the fitting data, we are able to recover other parameters of the matter distribution such as its mass and profile. We test our method on several simulated low‐mass stellar streams and also explore the cases for which additional data are required.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>gravitation</topic>
<topic>dark matter</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>417</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>198</start>
<end>215</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1C389159D60FED315FFEA4CC758B5A1D71712340</identifier>
<identifier type="ark">ark:/67375/WNG-D70TLXN3-X</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2011.19097.x</identifier>
<identifier type="ArticleID">MNR19097</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1C389159D60FED315FFEA4CC758B5A1D71712340/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000532 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000532 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1C389159D60FED315FFEA4CC758B5A1D71712340
   |texte=   Stellar streams as probes of dark halo mass and morphology: a Bayesian reconstruction
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024