Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines

Identifieur interne : 000476 ( Istex/Corpus ); précédent : 000475; suivant : 000477

Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines

Auteurs : Daniel B. Nestor ; Benjamin D. Johnson ; Vivienne Wild ; Brice Ménard ; David A. Turnshek ; Sandhya Rao ; Max Pettini

Source :

RBID : ISTEX:18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF

English descriptors

Abstract

Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg ii absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg ii (USMg ii) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg ii absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission‐line galaxies at similar redshift (Δv≲ 300 km s−1) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O ii] and Hβ line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (∼0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg ii absorbers – strongly implies a causal connection. We consider these data and USMg ii absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z≃ 0.7.

Url:
DOI: 10.1111/j.1365-2966.2010.17865.x

Links to Exploration step

ISTEX:18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines</title>
<author>
<name sortKey="Nestor, Daniel B" sort="Nestor, Daniel B" uniqKey="Nestor D" first="Daniel B." last="Nestor">Daniel B. Nestor</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dbn@astro.ucla.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Benjamin D" sort="Johnson, Benjamin D" uniqKey="Johnson B" first="Benjamin D." last="Johnson">Benjamin D. Johnson</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wild, Vivienne" sort="Wild, Vivienne" uniqKey="Wild V" first="Vivienne" last="Wild">Vivienne Wild</name>
<affiliation>
<mods:affiliation>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menard, Brice" sort="Menard, Brice" uniqKey="Menard B" first="Brice" last="Ménard">Brice Ménard</name>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turnshek, David A" sort="Turnshek, David A" uniqKey="Turnshek D" first="David A." last="Turnshek">David A. Turnshek</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rao, Sandhya" sort="Rao, Sandhya" uniqKey="Rao S" first="Sandhya" last="Rao">Sandhya Rao</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pettini, Max" sort="Pettini, Max" uniqKey="Pettini M" first="Max" last="Pettini">Max Pettini</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2010.17865.x</idno>
<idno type="url">https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000476</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000476</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Large‐scale outflows from
<hi rend="italic">z</hi>
≃ 0.7 starburst galaxies identified via ultrastrong Mg 
<hi rend="smallCaps">ii</hi>
quasar absorption lines</title>
<author>
<name sortKey="Nestor, Daniel B" sort="Nestor, Daniel B" uniqKey="Nestor D" first="Daniel B." last="Nestor">Daniel B. Nestor</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dbn@astro.ucla.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Benjamin D" sort="Johnson, Benjamin D" uniqKey="Johnson B" first="Benjamin D." last="Johnson">Benjamin D. Johnson</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wild, Vivienne" sort="Wild, Vivienne" uniqKey="Wild V" first="Vivienne" last="Wild">Vivienne Wild</name>
<affiliation>
<mods:affiliation>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menard, Brice" sort="Menard, Brice" uniqKey="Menard B" first="Brice" last="Ménard">Brice Ménard</name>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turnshek, David A" sort="Turnshek, David A" uniqKey="Turnshek D" first="David A." last="Turnshek">David A. Turnshek</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rao, Sandhya" sort="Rao, Sandhya" uniqKey="Rao S" first="Sandhya" last="Rao">Sandhya Rao</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pettini, Max" sort="Pettini, Max" uniqKey="Pettini M" first="Max" last="Pettini">Max Pettini</name>
<affiliation>
<mods:affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">412</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1559">1559</biblScope>
<biblScope unit="page" to="1572">1572</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-04-11">2011-04-11</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute magnitudes</term>
<term>Absorber</term>
<term>Absorption</term>
<term>Absorption features</term>
<term>Absorption kinematics</term>
<term>Absorption redshift</term>
<term>Absorption systems</term>
<term>Arcsec</term>
<term>Average absorption</term>
<term>Balmer</term>
<term>Balmer absorption lines</term>
<term>Balmer absorption strengths</term>
<term>Bright galaxies</term>
<term>Charlot</term>
<term>Charlot fall</term>
<term>Colours</term>
<term>Drive winds</term>
<term>Eld</term>
<term>Emission lines</term>
<term>Foreground galaxies</term>
<term>Galactic</term>
<term>Galactic wind</term>
<term>Galactic wind hosts</term>
<term>Galactic winds</term>
<term>Galaxy</term>
<term>Gmos</term>
<term>Gmos image</term>
<term>High ssfrs</term>
<term>Impact parameter</term>
<term>Impact parameters</term>
<term>Kinematics</term>
<term>Luminosity</term>
<term>Mass estimates</term>
<term>Metallicities</term>
<term>Mnras</term>
<term>Monthly notices</term>
<term>Nestor</term>
<term>Ntrq</term>
<term>Ntrq sample</term>
<term>Opaque component</term>
<term>Pettini</term>
<term>Photometry</term>
<term>Quasar</term>
<term>Quider</term>
<term>Redshift</term>
<term>Scenario</term>
<term>Sdss</term>
<term>Sdss spectrum</term>
<term>Sfrs</term>
<term>Shapley</term>
<term>Sightline</term>
<term>Similar redshift</term>
<term>Spectroscopic study</term>
<term>Star formation</term>
<term>Star formation episodes</term>
<term>Starburst</term>
<term>Starbursts</term>
<term>Steidel</term>
<term>Stellar</term>
<term>Stellar mass</term>
<term>Stellar masses</term>
<term>Stellar populations</term>
<term>Strongest systems</term>
<term>Such systems</term>
<term>Telluric absorption</term>
<term>Tremonti</term>
<term>Tting</term>
<term>Turnshek</term>
<term>Ultrastrong</term>
<term>Usmg</term>
<term>Uxes</term>
<term>Weaker systems</term>
<term>Zabs</term>
<term>Zabs galaxies</term>
<term>Zgal</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute magnitudes</term>
<term>Absorber</term>
<term>Absorption</term>
<term>Absorption features</term>
<term>Absorption kinematics</term>
<term>Absorption redshift</term>
<term>Absorption systems</term>
<term>Arcsec</term>
<term>Average absorption</term>
<term>Balmer</term>
<term>Balmer absorption lines</term>
<term>Balmer absorption strengths</term>
<term>Bright galaxies</term>
<term>Charlot</term>
<term>Charlot fall</term>
<term>Colours</term>
<term>Drive winds</term>
<term>Eld</term>
<term>Emission lines</term>
<term>Foreground galaxies</term>
<term>Galactic</term>
<term>Galactic wind</term>
<term>Galactic wind hosts</term>
<term>Galactic winds</term>
<term>Galaxy</term>
<term>Gmos</term>
<term>Gmos image</term>
<term>High ssfrs</term>
<term>Impact parameter</term>
<term>Impact parameters</term>
<term>Kinematics</term>
<term>Luminosity</term>
<term>Mass estimates</term>
<term>Metallicities</term>
<term>Mnras</term>
<term>Monthly notices</term>
<term>Nestor</term>
<term>Ntrq</term>
<term>Ntrq sample</term>
<term>Opaque component</term>
<term>Pettini</term>
<term>Photometry</term>
<term>Quasar</term>
<term>Quider</term>
<term>Redshift</term>
<term>Scenario</term>
<term>Sdss</term>
<term>Sdss spectrum</term>
<term>Sfrs</term>
<term>Shapley</term>
<term>Sightline</term>
<term>Similar redshift</term>
<term>Spectroscopic study</term>
<term>Star formation</term>
<term>Star formation episodes</term>
<term>Starburst</term>
<term>Starbursts</term>
<term>Steidel</term>
<term>Stellar</term>
<term>Stellar mass</term>
<term>Stellar masses</term>
<term>Stellar populations</term>
<term>Strongest systems</term>
<term>Such systems</term>
<term>Telluric absorption</term>
<term>Tremonti</term>
<term>Tting</term>
<term>Turnshek</term>
<term>Ultrastrong</term>
<term>Usmg</term>
<term>Uxes</term>
<term>Weaker systems</term>
<term>Zabs</term>
<term>Zabs galaxies</term>
<term>Zgal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg ii absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg ii (USMg ii) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg ii absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission‐line galaxies at similar redshift (Δv≲ 300 km s−1) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O ii] and Hβ line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (∼0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg ii absorbers – strongly implies a causal connection. We consider these data and USMg ii absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z≃ 0.7.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>usmg</json:string>
<json:string>redshift</json:string>
<json:string>absorber</json:string>
<json:string>mnras</json:string>
<json:string>galaxy</json:string>
<json:string>zabs</json:string>
<json:string>star formation</json:string>
<json:string>sightline</json:string>
<json:string>ntrq</json:string>
<json:string>sdss</json:string>
<json:string>steidel</json:string>
<json:string>sfrs</json:string>
<json:string>quasar</json:string>
<json:string>pettini</json:string>
<json:string>eld</json:string>
<json:string>starburst</json:string>
<json:string>starbursts</json:string>
<json:string>nestor</json:string>
<json:string>galactic</json:string>
<json:string>charlot</json:string>
<json:string>monthly notices</json:string>
<json:string>turnshek</json:string>
<json:string>colours</json:string>
<json:string>uxes</json:string>
<json:string>balmer</json:string>
<json:string>quider</json:string>
<json:string>kinematics</json:string>
<json:string>tremonti</json:string>
<json:string>tting</json:string>
<json:string>metallicities</json:string>
<json:string>zgal</json:string>
<json:string>galactic winds</json:string>
<json:string>shapley</json:string>
<json:string>photometry</json:string>
<json:string>emission lines</json:string>
<json:string>scenario</json:string>
<json:string>stellar</json:string>
<json:string>ultrastrong</json:string>
<json:string>arcsec</json:string>
<json:string>gmos</json:string>
<json:string>luminosity</json:string>
<json:string>zabs galaxies</json:string>
<json:string>galactic wind hosts</json:string>
<json:string>absorption kinematics</json:string>
<json:string>impact parameters</json:string>
<json:string>bright galaxies</json:string>
<json:string>galactic wind</json:string>
<json:string>absorption redshift</json:string>
<json:string>such systems</json:string>
<json:string>ntrq sample</json:string>
<json:string>stellar masses</json:string>
<json:string>balmer absorption strengths</json:string>
<json:string>mass estimates</json:string>
<json:string>absorption systems</json:string>
<json:string>similar redshift</json:string>
<json:string>absorption</json:string>
<json:string>gmos image</json:string>
<json:string>telluric absorption</json:string>
<json:string>absolute magnitudes</json:string>
<json:string>strongest systems</json:string>
<json:string>foreground galaxies</json:string>
<json:string>spectroscopic study</json:string>
<json:string>stellar mass</json:string>
<json:string>star formation episodes</json:string>
<json:string>weaker systems</json:string>
<json:string>absorption features</json:string>
<json:string>charlot fall</json:string>
<json:string>balmer absorption lines</json:string>
<json:string>stellar populations</json:string>
<json:string>high ssfrs</json:string>
<json:string>impact parameter</json:string>
<json:string>sdss spectrum</json:string>
<json:string>opaque component</json:string>
<json:string>drive winds</json:string>
<json:string>average absorption</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Daniel B. Nestor</name>
<affiliations>
<json:string>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</json:string>
<json:string>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA</json:string>
<json:string>E-mail: dbn@astro.ucla.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Benjamin D. Johnson</name>
<affiliations>
<json:string>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vivienne Wild</name>
<affiliations>
<json:string>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Brice Ménard</name>
<affiliations>
<json:string>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>David A. Turnshek</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sandhya Rao</name>
<affiliations>
<json:string>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Max Pettini</name>
<affiliations>
<json:string>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</json:string>
<json:string>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ISM: jets and outflows</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>intergalactic medium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>quasars: absorption lines</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>galaxies: starburst</value>
</json:item>
</subject>
<articleId>
<json:string>MNR17865</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-ZN8CWZ0R-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg ii absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg ii (USMg ii) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg ii absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission‐line galaxies at similar redshift (Δv≲ 300 km s−1) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O ii] and Hβ line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (∼0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg ii absorbers – strongly implies a causal connection. We consider these data and USMg ii absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z≃ 0.7.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>11104</pdfWordCount>
<pdfCharCount>61818</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>14</pdfPageCount>
<pdfPageSize>595.274 x 782.286 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>303</abstractWordCount>
<abstractCharCount>2044</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Monthly Notices of the Royal Astronomical Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2966</json:string>
</doi>
<issn>
<json:string>0035-8711</json:string>
</issn>
<eissn>
<json:string>1365-2966</json:string>
</eissn>
<publisherId>
<json:string>MNR</json:string>
</publisherId>
<volume>412</volume>
<issue>3</issue>
<pages>
<first>1559</first>
<last>1572</last>
<total>14</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>4000</json:string>
<json:string>1900</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Pittsburgh, Pittsburgh</json:string>
<json:string>National Science Foundation</json:string>
<json:string>University of California, Los Angeles</json:string>
<json:string>Astronomy, Inc.</json:string>
<json:string>Department of Physics and Astronomy</json:string>
<json:string>Institute of Astronomy</json:string>
<json:string>National Research Council</json:string>
<json:string>Australian Research Council</json:string>
<json:string>Department Accepted</json:string>
<json:string>Canadian Institute for Theoretical Astrophysics, University of Toronto</json:string>
<json:string>Radio Astronomy Research, University of Western Australia</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Sky Survey</json:string>
<json:string>See</json:string>
<json:string>David A. Turnshek</json:string>
<json:string>B. D. Johnson</json:string>
<json:string>Benjamin D. Johnson</json:string>
<json:string>Daniel B. Nestor</json:string>
<json:string>Marie Curie</json:string>
<json:string>The</json:string>
<json:string>Sandhya Rao</json:string>
<json:string>Max Pettini</json:string>
<json:string>George Street</json:string>
</persName>
<placeName>
<json:string>United States</json:string>
<json:string>Australia</json:string>
<json:string>Chile</json:string>
<json:string>Brazil</json:string>
<json:string>Pittsburgh</json:string>
<json:string>Canada</json:string>
<json:string>Argentina</json:string>
<json:string>Toronto</json:string>
<json:string>Ferrara</json:string>
<json:string>United Kingdom</json:string>
<json:string>France</json:string>
<json:string>European Union</json:string>
<json:string>Stirling</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Savaglio et al. 2005</json:string>
<json:string>Wild et al. 2009</json:string>
<json:string>Gabasch et al. 2006</json:string>
<json:string>Vanzella et al. 2009</json:string>
<json:string>Kassin et al. 2007</json:string>
<json:string>D. B. Nestor et al.</json:string>
<json:string>Nestor, Turnshek & Rao 2005</json:string>
<json:string>Rubin et al. (2010)</json:string>
<json:string>Bond et al. (2001)</json:string>
<json:string>Tremonti et al. 2007</json:string>
<json:string>Tremonti, Moustakas & Diamond-Stanic 2007</json:string>
<json:string>Quider et al.</json:string>
<json:string>Shapley et al. 2003</json:string>
<json:string>Brooks et al. 2007</json:string>
<json:string>Tinker & Chen 2008</json:string>
<json:string>Veilleux et al. 2005</json:string>
<json:string>Neistein, van den Bosch & Dekel 2006</json:string>
<json:string>Murphy et al. 2007</json:string>
<json:string>Pettini et al. 2002</json:string>
<json:string>Blanton et al.</json:string>
<json:string>Turnshek et al. 2005</json:string>
<json:string>Bertin & Arnouts 1996</json:string>
<json:string>Feulner et al.</json:string>
<json:string>Charlot & Fall 2000</json:string>
<json:string>Kobayashi et al. 2007</json:string>
<json:string>Drory et al. 2009</json:string>
<json:string>Wild et al. (2007)</json:string>
<json:string>Mshar et al. (2007)</json:string>
<json:string>Heckman et al. 2000</json:string>
<json:string>Pettini et al. 1999</json:string>
<json:string>Blanton et al. (2003)</json:string>
<json:string>Pettini et al. 2001</json:string>
<json:string>Gabasch et al. (2004)</json:string>
<json:string>Calzetti, Kinney & Storchi-Bergmann 1994</json:string>
<json:string>Quider et al. 2009</json:string>
<json:string>Kacprzak et al. 2007</json:string>
<json:string>Pettini et al. (1983)</json:string>
<json:string>Prochter, Prochaska & Burles 2006</json:string>
<json:string>Veilleux, Cecil & Bland-Hawthorn 2005</json:string>
<json:string>Nestor et al.</json:string>
<json:string>Weiner et al. 2009</json:string>
<json:string>Rubin et al. 2010</json:string>
<json:string>Steidel et al. 2010</json:string>
<json:string>Salim et al. 2007</json:string>
<json:string>Nestor et al. 2005</json:string>
<json:string>Salim et al. (2007)</json:string>
<json:string>Oppenheimer et al. 2010</json:string>
<json:string>Pettini et al. 2000</json:string>
<json:string>Zibetti et al. (2007)</json:string>
<json:string>Catinella, Giovanelli & Haynes 2006</json:string>
<json:string>Erb et al. 2006</json:string>
<json:string>Dessauges-Zavadsky et al. 2010</json:string>
<json:string>Tremonti et al. 2004</json:string>
<json:string>Meiring et al. 2008</json:string>
<json:string>Feulner et al. 2005</json:string>
<json:string>Wild et al. (2009)</json:string>
<json:string>Khochfar et al. 2007</json:string>
<json:string>Lorenzo et al.</json:string>
<json:string>Brooks et al. 2009</json:string>
<json:string>Benson et al. 2003</json:string>
<json:string>Wild et al.</json:string>
<json:string>Nestor et al. 2003</json:string>
<json:string>Steidel et al. 2002</json:string>
<json:string>Cowie et al. 1996</json:string>
<json:string>Zibetti et al.</json:string>
<json:string>Hopkins & Beacon 2006</json:string>
<json:string>Maiolino et al. 2008</json:string>
<json:string>Nestor et al. 2008</json:string>
<json:string>Kacprzak et al. 2010</json:string>
<json:string>Netzer 1990</json:string>
<json:string>Steidel et al. (2010)</json:string>
<json:string>Brocklehurst 1971</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-ZN8CWZ0R-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - astronomy & astrophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Astronomy and Astrophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - terre, ocean, espace</json:string>
<json:string>4 - astronomie</json:string>
</inist>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2966.2010.17865.x</json:string>
</doi>
<id>18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Large‐scale outflows from
<hi rend="italic">z</hi>
≃ 0.7 starburst galaxies identified via ultrastrong Mg 
<hi rend="smallCaps">ii</hi>
quasar absorption lines</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</licence>
</availability>
<date type="published" when="2011-04-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Large‐scale outflows from
<hi rend="italic">z</hi>
≃ 0.7 starburst galaxies identified via ultrastrong Mg 
<hi rend="smallCaps">ii</hi>
quasar absorption lines</title>
<title level="a" type="short">Galactic wind hosts at z≃ 0.7</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Daniel B.</forename>
<surname>Nestor</surname>
</persName>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>E‐mail: dbn@astro.ucla.edu</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Benjamin D.</forename>
<surname>Johnson</surname>
</persName>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Vivienne</forename>
<surname>Wild</surname>
</persName>
<affiliation>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Brice</forename>
<surname>Ménard</surname>
</persName>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">David A.</forename>
<surname>Turnshek</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Sandhya</forename>
<surname>Rao</surname>
</persName>
<affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Max</forename>
<surname>Pettini</surname>
</persName>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF</idno>
<idno type="ark">ark:/67375/WNG-ZN8CWZ0R-Q</idno>
<idno type="DOI">10.1111/j.1365-2966.2010.17865.x</idno>
<idno type="unit">MNR17865</idno>
<idno type="toTypesetVersion">file:MNR.MNR17865.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="pISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2966</idno>
<idno type="book-part-DOI">10.1111/mnr.2011.412.issue-3</idno>
<idno type="product">MNR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">412</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="1559">1559</biblScope>
<biblScope unit="page" to="1572">1572</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-04-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg 
<hi rend="smallCaps">ii</hi>
absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg 
<hi rend="smallCaps">ii</hi>
(USMg 
<hi rend="smallCaps">ii</hi>
) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg 
<hi rend="smallCaps">ii</hi>
absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems.</p>
<p>Each field contains two bright emission‐line galaxies at similar redshift (
<emph>
<span>Δ
<hi rend="italic">v</hi>
≲ 300</span>
</emph>
km s
<emph>
<span>
<hi rend="superscript">−1</hi>
</span>
</emph>
) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O 
<hi rend="smallCaps">ii</hi>
] and H
<emph>
<span>β</span>
</emph>
line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (
<emph>
<span></span>
</emph>
0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg 
<hi rend="smallCaps">ii</hi>
absorbers – strongly implies a causal connection. We consider these data and USMg 
<hi rend="smallCaps">ii</hi>
absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at
<emph>
<span>
<hi rend="italic">z</hi>
≃ 0.7</span>
</emph>
.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">ISM: jets and outflows</term>
<term xml:id="k2">intergalactic medium</term>
<term xml:id="k3">quasars: absorption lines</term>
<term xml:id="k4">galaxies: starburst</term>
</keywords>
<keywords rend="tocHeading1">
<term>Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2966</doi>
<issn type="print">0035-8711</issn>
<issn type="electronic">1365-2966</issn>
<idGroup>
<id type="product" value="MNR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY">Monthly Notices of the Royal Astronomical Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04103">
<doi origin="wiley">10.1111/mnr.2011.412.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="412">412</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2011-04-11">April 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2966.2010.17865.x</doi>
<idGroup>
<id type="unit" value="MNR17865"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Papers</title>
</titleGroup>
<copyright>© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4.8 mode:FullText" date="2011-04-04"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-03-22"></event>
<event type="firstOnline" date="2011-03-22"></event>
<event type="publishedOnlineFinalForm" date="2011-04-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1559">1559</numbering>
<numbering type="pageLast" number="1572">1572</numbering>
</numberingGroup>
<correspondenceTo> E‐mail:
<email>dbn@astro.ucla.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MNR.MNR17865.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted 2010 October 14. Received 2010 October 13; in original form 2010 March 19</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="4"></count>
<count type="formulaTotal" number="477"></count>
<count type="referenceTotal" number="79"></count>
<count type="linksCrossRef" number="161"></count>
</countGroup>
<titleGroup>
<title type="main">Large‐scale outflows from
<i>z</i>
≃ 0.7 starburst galaxies identified via ultrastrong Mg 
<sc>ii</sc>
quasar absorption lines</title>
<title type="shortAuthors">
<i>D. B. Nestor et al.</i>
</title>
<title type="short">
<i>Galactic wind hosts at z</i>
≃ 0.7</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2" corresponding="yes">
<personName>
<givenNames>Daniel B.</givenNames>
<familyName>Nestor</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Benjamin D.</givenNames>
<familyName>Johnson</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>Vivienne</givenNames>
<familyName>Wild</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>Brice</givenNames>
<familyName>Ménard</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a5">
<personName>
<givenNames>David A.</givenNames>
<familyName>Turnshek</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a5">
<personName>
<givenNames>Sandhya</givenNames>
<familyName>Rao</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a1 #a6">
<personName>
<givenNames>Max</givenNames>
<familyName>Pettini</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR">
<unparsedAffiliation>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="CA">
<unparsedAffiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="US">
<unparsedAffiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="AU">
<unparsedAffiliation>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">ISM: jets and outflows</keyword>
<keyword xml:id="k2">intergalactic medium</keyword>
<keyword xml:id="k3">quasars: absorption lines</keyword>
<keyword xml:id="k4">galaxies: starburst</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg 
<sc>ii</sc>
absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg 
<sc>ii</sc>
(USMg 
<sc>ii</sc>
) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg 
<sc>ii</sc>
absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems.</p>
<p>Each field contains two bright emission‐line galaxies at similar redshift (
<span type="mathematics">Δ
<i>v</i>
≲ 300</span>
km s
<span type="mathematics">
<sup>−1</sup>
</span>
) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O 
<sc>ii</sc>
] and H
<span type="mathematics">β</span>
line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (
<span type="mathematics"></span>
0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg 
<sc>ii</sc>
absorbers – strongly implies a causal connection. We consider these data and USMg 
<sc>ii</sc>
absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at
<span type="mathematics">
<i>z</i>
≃ 0.7</span>
.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Galactic wind hosts at z≃ 0.7</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel B.</namePart>
<namePart type="family">Nestor</namePart>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095‐1547, USA</affiliation>
<affiliation>E-mail: dbn@astro.ucla.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin D.</namePart>
<namePart type="family">Johnson</namePart>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivienne</namePart>
<namePart type="family">Wild</namePart>
<affiliation>Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brice</namePart>
<namePart type="family">Ménard</namePart>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M55 3H8, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David A.</namePart>
<namePart type="family">Turnshek</namePart>
<affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandhya</namePart>
<namePart type="family">Rao</namePart>
<affiliation>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Max</namePart>
<namePart type="family">Pettini</namePart>
<affiliation>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA</affiliation>
<affiliation>International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-04-11</dateIssued>
<edition>Accepted 2010 October 14. Received 2010 October 13; in original form 2010 March 19</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">4</extent>
<extent unit="formulas">477</extent>
<extent unit="references">79</extent>
<extent unit="linksCrossRef">161</extent>
</physicalDescription>
<abstract lang="en">Star formation driven outflows are a critically important phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observational studies to trace galactic winds across cosmological time‐scales. It has been suggested that the strongest Mg ii absorption‐line systems detected in the spectra of background quasars might arise in outflows from foreground galaxies. If confirmed, such ‘ultrastrong’ Mg ii (USMg ii) absorbers would represent a method to identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMg ii absorber systems culled from a statistical absorber catalogue, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission‐line galaxies at similar redshift (Δv≲ 300 km s−1) to that of the absorption. Lower limits on their instantaneous star formation rates (SFRs) from the observed [O ii] and Hβ line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at these redshifts. Additionally, their 4000‐Å break and Balmer absorption strengths imply they have undergone recent (∼0.01–1 Gyr) starbursts. The concomitant presence of two rare phenomena – starbursts and USMg ii absorbers – strongly implies a causal connection. We consider these data and USMg ii absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst‐driven outflows over tidally stripped gas from a major interaction, which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z≃ 0.7.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>ISM: jets and outflows</topic>
<topic>intergalactic medium</topic>
<topic>quasars: absorption lines</topic>
<topic>galaxies: starburst</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Monthly Notices of the Royal Astronomical Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0035-8711</identifier>
<identifier type="eISSN">1365-2966</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2966</identifier>
<identifier type="PublisherID">MNR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>412</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1559</start>
<end>1572</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF</identifier>
<identifier type="ark">ark:/67375/WNG-ZN8CWZ0R-Q</identifier>
<identifier type="DOI">10.1111/j.1365-2966.2010.17865.x</identifier>
<identifier type="ArticleID">MNR17865</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000476 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000476 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:18EFFE47C20EAAF6F83EDF27D3881C2027FEEACF
   |texte=   Large‐scale outflows from z≃ 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024