Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroxamate siderophores of root nodule bacteria

Identifieur interne : 000406 ( Istex/Corpus ); précédent : 000405; suivant : 000407

Hydroxamate siderophores of root nodule bacteria

Auteurs : Kerry C. Carson ; Jean-Marie Meyer ; Michael J. Dilworth

Source :

RBID : ISTEX:15445AC5E06912870FCE248DF687819E33352F6D

English descriptors

Abstract

Abstract: Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii).

Url:
DOI: 10.1016/S0038-0717(99)00107-8

Links to Exploration step

ISTEX:15445AC5E06912870FCE248DF687819E33352F6D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydroxamate siderophores of root nodule bacteria</title>
<author>
<name sortKey="Carson, Kerry C" sort="Carson, Kerry C" uniqKey="Carson K" first="Kerry C." last="Carson">Kerry C. Carson</name>
<affiliation>
<mods:affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Jean Marie" sort="Meyer, Jean Marie" uniqKey="Meyer J" first="Jean-Marie" last="Meyer">Jean-Marie Meyer</name>
<affiliation>
<mods:affiliation>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dilworth, Michael J" sort="Dilworth, Michael J" uniqKey="Dilworth M" first="Michael J." last="Dilworth">Michael J. Dilworth</name>
<affiliation>
<mods:affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:15445AC5E06912870FCE248DF687819E33352F6D</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0038-0717(99)00107-8</idno>
<idno type="url">https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000406</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000406</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Hydroxamate siderophores of root nodule bacteria</title>
<author>
<name sortKey="Carson, Kerry C" sort="Carson, Kerry C" uniqKey="Carson K" first="Kerry C." last="Carson">Kerry C. Carson</name>
<affiliation>
<mods:affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Jean Marie" sort="Meyer, Jean Marie" uniqKey="Meyer J" first="Jean-Marie" last="Meyer">Jean-Marie Meyer</name>
<affiliation>
<mods:affiliation>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dilworth, Michael J" sort="Dilworth, Michael J" uniqKey="Dilworth M" first="Michael J." last="Dilworth">Michael J. Dilworth</name>
<affiliation>
<mods:affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Soil Biology and Biochemistry</title>
<title level="j" type="abbrev">SBB</title>
<idno type="ISSN">0038-0717</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="11">11</biblScope>
<biblScope unit="page" to="21">21</biblScope>
</imprint>
<idno type="ISSN">0038-0717</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0038-0717</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aircs</term>
<term>Assay</term>
<term>Biochemistry</term>
<term>Bradyrhizobia</term>
<term>Bradyrhizobium</term>
<term>Carson</term>
<term>Citrate</term>
<term>Complexed</term>
<term>Dihydroxamate</term>
<term>Dihydroxamate siderophores</term>
<term>Dilworth</term>
<term>Ferric</term>
<term>Final cell</term>
<term>Guerinot</term>
<term>Hydroxamate</term>
<term>Inoculant</term>
<term>Iron concentration</term>
<term>Iron concentrations</term>
<term>Iron transport</term>
<term>Japonicum</term>
<term>Leguminosarum</term>
<term>Meliloti</term>
<term>Meliloti strains</term>
<term>Microbiology</term>
<term>Nodule</term>
<term>Perchlorate</term>
<term>Persmark</term>
<term>Positive reaction</term>
<term>Reagent</term>
<term>Rhizobactin</term>
<term>Rhizobium</term>
<term>Rhizobium leguminosarum</term>
<term>Rhizobium meliloti</term>
<term>Root nodule bacteria</term>
<term>Sativa</term>
<term>Siderophore</term>
<term>Siderophore producers</term>
<term>Siderophore production</term>
<term>Siderophores</term>
<term>Soil biology biochemistry</term>
<term>Supernatant</term>
<term>Trifolii</term>
<term>Trihydroxamate</term>
<term>Trihydroxamate siderophore</term>
<term>Trihydroxamate siderophores</term>
<term>Trihydroxamates</term>
<term>Tropici</term>
<term>Viciae</term>
<term>Vicibactin</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aircs</term>
<term>Assay</term>
<term>Biochemistry</term>
<term>Bradyrhizobia</term>
<term>Bradyrhizobium</term>
<term>Carson</term>
<term>Citrate</term>
<term>Complexed</term>
<term>Dihydroxamate</term>
<term>Dihydroxamate siderophores</term>
<term>Dilworth</term>
<term>Ferric</term>
<term>Final cell</term>
<term>Guerinot</term>
<term>Inoculant</term>
<term>Iron concentration</term>
<term>Iron concentrations</term>
<term>Japonicum</term>
<term>Leguminosarum</term>
<term>Meliloti</term>
<term>Meliloti strains</term>
<term>Microbiology</term>
<term>Nodule</term>
<term>Perchlorate</term>
<term>Persmark</term>
<term>Positive reaction</term>
<term>Reagent</term>
<term>Rhizobactin</term>
<term>Rhizobium</term>
<term>Rhizobium leguminosarum</term>
<term>Rhizobium meliloti</term>
<term>Root nodule bacteria</term>
<term>Sativa</term>
<term>Siderophore</term>
<term>Siderophore producers</term>
<term>Siderophore production</term>
<term>Siderophores</term>
<term>Soil biology biochemistry</term>
<term>Supernatant</term>
<term>Trifolii</term>
<term>Trihydroxamate</term>
<term>Trihydroxamate siderophore</term>
<term>Trihydroxamate siderophores</term>
<term>Trihydroxamates</term>
<term>Tropici</term>
<term>Viciae</term>
<term>Vicibactin</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii).</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>siderophore</json:string>
<json:string>leguminosarum</json:string>
<json:string>siderophores</json:string>
<json:string>rhizobium</json:string>
<json:string>aircs</json:string>
<json:string>meliloti</json:string>
<json:string>bradyrhizobium</json:string>
<json:string>viciae</json:string>
<json:string>trihydroxamate</json:string>
<json:string>nodule</json:string>
<json:string>dihydroxamate</json:string>
<json:string>vicibactin</json:string>
<json:string>trifolii</json:string>
<json:string>rhizobactin</json:string>
<json:string>tropici</json:string>
<json:string>siderophore production</json:string>
<json:string>root nodule bacteria</json:string>
<json:string>complexed</json:string>
<json:string>biochemistry</json:string>
<json:string>citrate</json:string>
<json:string>microbiology</json:string>
<json:string>soil biology biochemistry</json:string>
<json:string>japonicum</json:string>
<json:string>bradyrhizobia</json:string>
<json:string>dihydroxamate siderophores</json:string>
<json:string>ferric</json:string>
<json:string>trihydroxamates</json:string>
<json:string>sativa</json:string>
<json:string>carson</json:string>
<json:string>inoculant</json:string>
<json:string>perchlorate</json:string>
<json:string>persmark</json:string>
<json:string>guerinot</json:string>
<json:string>dilworth</json:string>
<json:string>trihydroxamate siderophores</json:string>
<json:string>iron concentration</json:string>
<json:string>siderophore producers</json:string>
<json:string>supernatant</json:string>
<json:string>meliloti strains</json:string>
<json:string>rhizobium leguminosarum</json:string>
<json:string>positive reaction</json:string>
<json:string>rhizobium meliloti</json:string>
<json:string>reagent</json:string>
<json:string>assay</json:string>
<json:string>iron concentrations</json:string>
<json:string>trihydroxamate siderophore</json:string>
<json:string>final cell</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Kerry C. Carson</name>
<affiliations>
<json:string>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean-Marie Meyer</name>
<affiliations>
<json:string>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael J. Dilworth</name>
<affiliations>
<json:string>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydroxamate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Siderophore</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Iron transport</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Root nodule bacteria</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-LRL33NSX-G</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii).</abstract>
<qualityIndicators>
<score>9.244</score>
<pdfWordCount>5462</pdfWordCount>
<pdfCharCount>37094</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>595 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>187</abstractWordCount>
<abstractCharCount>1496</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Hydroxamate siderophores of root nodule bacteria</title>
<pii>
<json:string>S0038-0717(99)00107-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Soil Biology and Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0038-0717</json:string>
</issn>
<pii>
<json:string>S0038-0717(00)X0056-9</json:string>
</pii>
<volume>32</volume>
<issue>1</issue>
<pages>
<first>11</first>
<last>21</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Murdoch University</json:string>
<json:string>Research School Biological Sciences, Australian National University, Canberra, ACT</json:string>
<json:string>Australia Laboratoire</json:string>
<json:string>UK CRS</json:string>
<json:string>UK CAS</json:string>
<json:string>Australian Inoculants Research and Control Service</json:string>
<json:string>John Innes Research Institute, Norwich</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>Massachusettes Institute of Rhizobactin</json:string>
<json:string>Western Australia, Baron Court, South Perth, WA</json:string>
<json:string>Australian Inoculants Research and Control Service, NSW Agriculture</json:string>
<json:string>Japan Cicer</json:string>
<json:string>University of Reading</json:string>
<json:string>USA AIRCS AIRCS AIRCS AIRCS CRS AIRCS Nitragin Co.</json:string>
<json:string>United States Bradyrhizobium</json:string>
<json:string>LiphaTech</json:string>
<json:string>Swart University</json:string>
<json:string>Uruguay AIRCS AIRCS AIRCS CRS</json:string>
<json:string>AIRCS</json:string>
<json:string>Rhizobium Research Laboratory, University of Minnesota, St</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>W.A. E. Fabiano</json:string>
<json:string>Elizabeth Hartley</json:string>
<json:string>P.O. Box</json:string>
<json:string>G. Walker</json:string>
<json:string>L. Hedysarum</json:string>
<json:string>YE Bradyrhizobium</json:string>
<json:string>J. Evans</json:string>
<json:string>Vicibactin</json:string>
<json:string>A. Puhler</json:string>
<json:string>P.H. Graham</json:string>
<json:string>Agriculture</json:string>
</persName>
<placeName>
<json:string>Bielefeld</json:string>
<json:string>Germany</json:string>
<json:string>Australia</json:string>
<json:string>Milwaukee</json:string>
<json:string>Poole</json:string>
<json:string>USA</json:string>
<json:string>Strasbourg</json:string>
<json:string>South Africa</json:string>
<json:string>Tokyo</json:string>
<json:string>Montevideo</json:string>
<json:string>York</json:string>
<json:string>France</json:string>
<json:string>WI</json:string>
<json:string>Cambridge</json:string>
<json:string>Uruguay</json:string>
<json:string>Pretoria</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Modi et al., 1985</json:string>
<json:string>Reigh and O'Connell, 1993</json:string>
<json:string>Patel et al., 1988</json:string>
<json:string>Brown and Dilworth (1975)</json:string>
<json:string>Rai et al., 1982</json:string>
<json:string>Nambiar and Sivaramakrishnan, 1987</json:string>
<json:string>O'Hara et al., 1988a,b</json:string>
<json:string>Meyer et al., 1998</json:string>
<json:string>Rioux et al., 1986</json:string>
<json:string>Guerinot, 1991</json:string>
<json:string>van Rossum et al., 1994</json:string>
<json:string>Manjanatha et al., 1992</json:string>
<json:string>Meade et al., 1982</json:string>
<json:string>O'Hara et al., 1988a</json:string>
<json:string>Carson et al. (1992)</json:string>
<json:string>Arnow, 1937</json:string>
<json:string>Meyer et al., 1997</json:string>
<json:string>Schwynn and Neilands, 1987</json:string>
<json:string>Guerinot et al., 1990</json:string>
<json:string>K.C. Carson et al.</json:string>
<json:string>Plessner et al., 1993</json:string>
<json:string>Jalal and van der Helm, 1991</json:string>
<json:string>Carson et al., 1994</json:string>
<json:string>Persmark et al. (1993)</json:string>
<json:string>Rm2011</json:string>
<json:string>Smith et al., 1985</json:string>
<json:string>Persmark et al., 1993</json:string>
<json:string>Dilworth et al., 1998</json:string>
<json:string>Lesueur et al. (1993)</json:string>
<json:string>Lesueur et al., 1993</json:string>
<json:string>Roy et al., 1994</json:string>
<json:string>Hemantaranjan and Garg, 1986</json:string>
<json:string>El Barraho et al., 1997</json:string>
<json:string>Beringer, 1974</json:string>
<json:string>Barran and Brom®eld, 1993</json:string>
<json:string>Casse et al. (1979)</json:string>
<json:string>Fabiano et al., 1994</json:string>
<json:string>Carson et al. (1994)</json:string>
<json:string>Carson et al., 1992</json:string>
<json:string>Skorupska et al., 1989</json:string>
<json:string>Koedam et al. (1994)</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-LRL33NSX-G</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - soil science</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - agriculture, fisheries & forestry</json:string>
<json:string>3 - agronomy & agriculture</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Microbiology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - microbiologie</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0038-0717(99)00107-8</json:string>
</doi>
<id>15445AC5E06912870FCE248DF687819E33352F6D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Hydroxamate siderophores of root nodule bacteria</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science Ltd</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Table 1: Rhizobium and Bradyrhizobium strains used in this study and reported siderophore productiona</note>
<note type="content">Table 2: Final cell yield, MGT and CAS reaction for siderophore production of S. meliloti 242, R. leguminosarum bv. viciae MNF3841 and R. tropici 3060 grown in MSM-YE with various concentrations of added irona</note>
<note type="content">Table 3: CAS reaction, siderophore type and siderophore pI of all siderophore-producing strains of rhizobia. (No bradyrhizobia were CAS-positive)b</note>
<note type="content">Table 4: 59Fe uptake rates of 32 strains of rhizobia and bradyrhizobia as mediated by vicibactin, RT (purified siderophore from R. trifolii CB782), TP (purified siderophore from R. tropici WSM1385), SM (purified siderophore from S. meliloti 242), rhizobactin 1021 and citrate</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Hydroxamate siderophores of root nodule bacteria</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Kerry C.</forename>
<surname>Carson</surname>
</persName>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jean-Marie</forename>
<surname>Meyer</surname>
</persName>
<affiliation>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Michael J.</forename>
<surname>Dilworth</surname>
</persName>
<affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</affiliation>
</author>
<idno type="istex">15445AC5E06912870FCE248DF687819E33352F6D</idno>
<idno type="DOI">10.1016/S0038-0717(99)00107-8</idno>
<idno type="PII">S0038-0717(99)00107-8</idno>
</analytic>
<monogr>
<title level="j">Soil Biology and Biochemistry</title>
<title level="j" type="abbrev">SBB</title>
<idno type="pISSN">0038-0717</idno>
<idno type="PII">S0038-0717(00)X0056-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="11">11</biblScope>
<biblScope unit="page" to="21">21</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii).</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Hydroxamate</term>
</item>
<item>
<term>Siderophore</term>
</item>
<item>
<term>Iron transport</term>
</item>
<item>
<term>Root nodule bacteria</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>SBB</jid>
<aid>1495</aid>
<ce:pii>S0038-0717(99)00107-8</ce:pii>
<ce:doi>10.1016/S0038-0717(99)00107-8</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Hydroxamate siderophores of root nodule bacteria</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Kerry C.</ce:given-name>
<ce:surname>Carson</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jean-Marie</ce:given-name>
<ce:surname>Meyer</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Michael J.</ce:given-name>
<ce:surname>Dilworth</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="15" month="6" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including
<ce:italic>Sinorhizobium meliloti</ce:italic>
(WSM826, WSM352, SU47),
<ce:italic>Rhizobium leguminosarum</ce:italic>
biovar
<ce:italic>viciae</ce:italic>
(WU163, MNF3841, SU391),
<ce:italic>Rhizobium leguminosarum</ce:italic>
biovar
<ce:italic>trifolii</ce:italic>
(CB782, CC2483g, CC283b) and
<ce:italic>Rhizobium tropici</ce:italic>
(WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The
<ce:italic>S. meliloti</ce:italic>
strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of
<ce:italic>R. tropici</ce:italic>
CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive.
<ce:sup loc="pre">59</ce:sup>
Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by
<ce:italic>S. meliloti</ce:italic>
strains 1021, Rm2011 and SU47 and vicibactin by seven strains of
<ce:italic>R. leguminosarum</ce:italic>
(bv.
<ce:italic>viciae</ce:italic>
and bv.
<ce:italic>trifolii</ce:italic>
).</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Hydroxamate</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Siderophore</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Iron transport</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Root nodule bacteria</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Hydroxamate siderophores of root nodule bacteria</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Hydroxamate siderophores of root nodule bacteria</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kerry C.</namePart>
<namePart type="family">Carson</namePart>
<affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Marie</namePart>
<namePart type="family">Meyer</namePart>
<affiliation>Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, UPRES-A du CNRS no. 7010, 28 rue Goethe, F-6700 Strasbourg, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael J.</namePart>
<namePart type="family">Dilworth</namePart>
<affiliation>Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, South St., Murdoch, WA 6150, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii).</abstract>
<note type="content">Table 1: Rhizobium and Bradyrhizobium strains used in this study and reported siderophore productiona</note>
<note type="content">Table 2: Final cell yield, MGT and CAS reaction for siderophore production of S. meliloti 242, R. leguminosarum bv. viciae MNF3841 and R. tropici 3060 grown in MSM-YE with various concentrations of added irona</note>
<note type="content">Table 3: CAS reaction, siderophore type and siderophore pI of all siderophore-producing strains of rhizobia. (No bradyrhizobia were CAS-positive)b</note>
<note type="content">Table 4: 59Fe uptake rates of 32 strains of rhizobia and bradyrhizobia as mediated by vicibactin, RT (purified siderophore from R. trifolii CB782), TP (purified siderophore from R. tropici WSM1385), SM (purified siderophore from S. meliloti 242), rhizobactin 1021 and citrate</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Hydroxamate</topic>
<topic>Siderophore</topic>
<topic>Iron transport</topic>
<topic>Root nodule bacteria</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Soil Biology and Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SBB</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">200001</dateIssued>
</originInfo>
<identifier type="ISSN">0038-0717</identifier>
<identifier type="PII">S0038-0717(00)X0056-9</identifier>
<part>
<date>200001</date>
<detail type="volume">
<number>32</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>142</end>
</extent>
<extent unit="pages">
<start>11</start>
<end>21</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">15445AC5E06912870FCE248DF687819E33352F6D</identifier>
<identifier type="ark">ark:/67375/6H6-LRL33NSX-G</identifier>
<identifier type="DOI">10.1016/S0038-0717(99)00107-8</identifier>
<identifier type="PII">S0038-0717(99)00107-8</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/15445AC5E06912870FCE248DF687819E33352F6D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000406 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000406 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:15445AC5E06912870FCE248DF687819E33352F6D
   |texte=   Hydroxamate siderophores of root nodule bacteria
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024