Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

Identifieur interne : 000354 ( Istex/Corpus ); précédent : 000353; suivant : 000355

Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

Auteurs : Shijie Zhong ; Michael Ritzwoller ; Nikolai Shapiro ; William Landuyt ; Jinshui Huang ; Paul Wessel

Source :

RBID : ISTEX:128D126CB75215DDDC0CD54B1C441D5628AC82F7

English descriptors

Abstract

A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.

Url:
DOI: 10.1029/2006JB004628

Links to Exploration step

ISTEX:128D126CB75215DDDC0CD54B1C441D5628AC82F7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
<author>
<name sortKey="Zhong, Shijie" sort="Zhong, Shijie" uniqKey="Zhong S" first="Shijie" last="Zhong">Shijie Zhong</name>
<affiliation>
<mods:affiliation>E-mail: szhong@colorado.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: szhong@colorado.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ritzwoller, Michael" sort="Ritzwoller, Michael" uniqKey="Ritzwoller M" first="Michael" last="Ritzwoller">Michael Ritzwoller</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Nikolai" sort="Shapiro, Nikolai" uniqKey="Shapiro N" first="Nikolai" last="Shapiro">Nikolai Shapiro</name>
<affiliation>
<mods:affiliation>Institut de Physique du Globe, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landuyt, William" sort="Landuyt, William" uniqKey="Landuyt W" first="William" last="Landuyt">William Landuyt</name>
<affiliation>
<mods:affiliation>Department of Geology and Geophysics, Yale University, Connecticut, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jinshui" sort="Huang, Jinshui" uniqKey="Huang J" first="Jinshui" last="Huang">Jinshui Huang</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wessel, Paul" sort="Wessel, Paul" uniqKey="Wessel P" first="Paul" last="Wessel">Paul Wessel</name>
<affiliation>
<mods:affiliation>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:128D126CB75215DDDC0CD54B1C441D5628AC82F7</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1029/2006JB004628</idno>
<idno type="url">https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000354</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000354</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
<author>
<name sortKey="Zhong, Shijie" sort="Zhong, Shijie" uniqKey="Zhong S" first="Shijie" last="Zhong">Shijie Zhong</name>
<affiliation>
<mods:affiliation>E-mail: szhong@colorado.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: szhong@colorado.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ritzwoller, Michael" sort="Ritzwoller, Michael" uniqKey="Ritzwoller M" first="Michael" last="Ritzwoller">Michael Ritzwoller</name>
<affiliation>
<mods:affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shapiro, Nikolai" sort="Shapiro, Nikolai" uniqKey="Shapiro N" first="Nikolai" last="Shapiro">Nikolai Shapiro</name>
<affiliation>
<mods:affiliation>Institut de Physique du Globe, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landuyt, William" sort="Landuyt, William" uniqKey="Landuyt W" first="William" last="Landuyt">William Landuyt</name>
<affiliation>
<mods:affiliation>Department of Geology and Geophysics, Yale University, Connecticut, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jinshui" sort="Huang, Jinshui" uniqKey="Huang J" first="Jinshui" last="Huang">Jinshui Huang</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wessel, Paul" sort="Wessel, Paul" uniqKey="Wessel P" first="Paul" last="Wessel">Paul Wessel</name>
<affiliation>
<mods:affiliation>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">112</biblScope>
<biblScope unit="issue">B6</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2007-06">2007-06</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anomaly</term>
<term>Available data sets</term>
<term>Bathymetry</term>
<term>Behrman projection</term>
<term>Central region</term>
<term>Convection</term>
<term>Convective</term>
<term>Convective upwelling plumes</term>
<term>Darwin</term>
<term>Darwin rise</term>
<term>Davy</term>
<term>Deep mantle plumes</term>
<term>Different approach</term>
<term>Earth planet</term>
<term>Further removal</term>
<term>Geographical dependences</term>
<term>Geophys</term>
<term>Hager</term>
<term>Hawaiian</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Hillier</term>
<term>Hotspot</term>
<term>Hscplate model</term>
<term>Huang</term>
<term>Hunen</term>
<term>Lett</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric reheating</term>
<term>Lithospheric structures</term>
<term>Mantle convection</term>
<term>Mantle convective upwellings</term>
<term>Mantle plumes</term>
<term>Mantle structure</term>
<term>Mcnutt</term>
<term>Model prediction</term>
<term>Model predictions</term>
<term>Montelli</term>
<term>Northern region</term>
<term>Ocean depth</term>
<term>Ocean depths</term>
<term>Oceanic</term>
<term>Oceanic islands</term>
<term>Oceanic lithosphere</term>
<term>Oceanic plates</term>
<term>Older seafloor</term>
<term>Other processes</term>
<term>Pacific lithosphere</term>
<term>Pacific ocean</term>
<term>Pacific plate</term>
<term>Plate model</term>
<term>Plate models</term>
<term>Plume</term>
<term>Plume materials</term>
<term>Pribac</term>
<term>Reference model</term>
<term>Regional variations</term>
<term>Reheating</term>
<term>Residual</term>
<term>Residual topography</term>
<term>Ritzwoller</term>
<term>Sclater</term>
<term>Seafloor</term>
<term>Seafloor ages</term>
<term>Seafloor topography</term>
<term>Seamount</term>
<term>Sediment</term>
<term>Seismic</term>
<term>Seismic model</term>
<term>Seismic models</term>
<term>Seismic structure</term>
<term>Seismically</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Southern region</term>
<term>Southern regions</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Sublithospheric</term>
<term>Sublithospheric convection</term>
<term>Thermal anomalies</term>
<term>Thermal evolution</term>
<term>Thermal structure</term>
<term>Thin lines</term>
<term>Topographic</term>
<term>Topographic deviations</term>
<term>Topographic variations</term>
<term>Topography</term>
<term>Topography analyses</term>
<term>Watts</term>
<term>Wessel</term>
<term>Young seafloor</term>
<term>Younger seafloor</term>
<term>Zhong</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anomaly</term>
<term>Available data sets</term>
<term>Bathymetry</term>
<term>Behrman projection</term>
<term>Central region</term>
<term>Convection</term>
<term>Convective</term>
<term>Convective upwelling plumes</term>
<term>Darwin</term>
<term>Darwin rise</term>
<term>Davy</term>
<term>Deep mantle plumes</term>
<term>Different approach</term>
<term>Earth planet</term>
<term>Further removal</term>
<term>Geographical dependences</term>
<term>Geophys</term>
<term>Hager</term>
<term>Hawaiian</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Hillier</term>
<term>Hotspot</term>
<term>Hscplate model</term>
<term>Huang</term>
<term>Hunen</term>
<term>Lett</term>
<term>Lithosphere</term>
<term>Lithospheric</term>
<term>Lithospheric reheating</term>
<term>Lithospheric structures</term>
<term>Mantle convection</term>
<term>Mantle convective upwellings</term>
<term>Mantle plumes</term>
<term>Mantle structure</term>
<term>Mcnutt</term>
<term>Model prediction</term>
<term>Model predictions</term>
<term>Montelli</term>
<term>Northern region</term>
<term>Ocean depth</term>
<term>Ocean depths</term>
<term>Oceanic</term>
<term>Oceanic islands</term>
<term>Oceanic lithosphere</term>
<term>Oceanic plates</term>
<term>Older seafloor</term>
<term>Other processes</term>
<term>Pacific lithosphere</term>
<term>Pacific ocean</term>
<term>Pacific plate</term>
<term>Plate model</term>
<term>Plate models</term>
<term>Plume</term>
<term>Plume materials</term>
<term>Pribac</term>
<term>Reference model</term>
<term>Regional variations</term>
<term>Reheating</term>
<term>Residual</term>
<term>Residual topography</term>
<term>Ritzwoller</term>
<term>Sclater</term>
<term>Seafloor</term>
<term>Seafloor ages</term>
<term>Seafloor topography</term>
<term>Seamount</term>
<term>Sediment</term>
<term>Seismic</term>
<term>Seismic model</term>
<term>Seismic models</term>
<term>Seismic structure</term>
<term>Seismically</term>
<term>Solid line</term>
<term>Solid lines</term>
<term>Southern region</term>
<term>Southern regions</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Sublithospheric</term>
<term>Sublithospheric convection</term>
<term>Thermal anomalies</term>
<term>Thermal evolution</term>
<term>Thermal structure</term>
<term>Thin lines</term>
<term>Topographic</term>
<term>Topographic deviations</term>
<term>Topographic variations</term>
<term>Topography</term>
<term>Topography analyses</term>
<term>Watts</term>
<term>Wessel</term>
<term>Young seafloor</term>
<term>Younger seafloor</term>
<term>Zhong</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>seafloor</json:string>
<json:string>seamount</json:string>
<json:string>lithosphere</json:string>
<json:string>residual topography</json:string>
<json:string>zhong</json:string>
<json:string>lithospheric</json:string>
<json:string>pacific plate</json:string>
<json:string>geophys</json:string>
<json:string>plate model</json:string>
<json:string>watts</json:string>
<json:string>hillier</json:string>
<json:string>mantle plumes</json:string>
<json:string>northern region</json:string>
<json:string>residual</json:string>
<json:string>oceanic</json:string>
<json:string>seafloor topography</json:string>
<json:string>ritzwoller</json:string>
<json:string>topography</json:string>
<json:string>plume</json:string>
<json:string>huang</json:string>
<json:string>topographic</json:string>
<json:string>sclater</json:string>
<json:string>standard deviations</json:string>
<json:string>darwin rise</json:string>
<json:string>bathymetry</json:string>
<json:string>southern regions</json:string>
<json:string>seismic</json:string>
<json:string>hager</json:string>
<json:string>central region</json:string>
<json:string>topography analyses</json:string>
<json:string>reheating</json:string>
<json:string>convective</json:string>
<json:string>topographic variations</json:string>
<json:string>reference model</json:string>
<json:string>model prediction</json:string>
<json:string>heat flux</json:string>
<json:string>ocean depth</json:string>
<json:string>earth planet</json:string>
<json:string>pacific lithosphere</json:string>
<json:string>anomaly</json:string>
<json:string>lithospheric reheating</json:string>
<json:string>seismically</json:string>
<json:string>topographic deviations</json:string>
<json:string>wessel</json:string>
<json:string>lett</json:string>
<json:string>pribac</json:string>
<json:string>mcnutt</json:string>
<json:string>montelli</json:string>
<json:string>sublithospheric</json:string>
<json:string>seismic model</json:string>
<json:string>southern region</json:string>
<json:string>young seafloor</json:string>
<json:string>older seafloor</json:string>
<json:string>mantle convection</json:string>
<json:string>hotspot</json:string>
<json:string>hunen</json:string>
<json:string>plate models</json:string>
<json:string>sublithospheric convection</json:string>
<json:string>thermal structure</json:string>
<json:string>pacific ocean</json:string>
<json:string>heat flow</json:string>
<json:string>thin lines</json:string>
<json:string>convection</json:string>
<json:string>sediment</json:string>
<json:string>oceanic islands</json:string>
<json:string>model predictions</json:string>
<json:string>available data sets</json:string>
<json:string>seismic models</json:string>
<json:string>solid lines</json:string>
<json:string>thermal evolution</json:string>
<json:string>mantle structure</json:string>
<json:string>davy</json:string>
<json:string>darwin</json:string>
<json:string>standard deviation</json:string>
<json:string>younger seafloor</json:string>
<json:string>hscplate model</json:string>
<json:string>solid line</json:string>
<json:string>other processes</json:string>
<json:string>further removal</json:string>
<json:string>different approach</json:string>
<json:string>deep mantle plumes</json:string>
<json:string>seafloor ages</json:string>
<json:string>behrman projection</json:string>
<json:string>seismic structure</json:string>
<json:string>oceanic lithosphere</json:string>
<json:string>lithospheric structures</json:string>
<json:string>thermal anomalies</json:string>
<json:string>oceanic plates</json:string>
<json:string>regional variations</json:string>
<json:string>convective upwelling plumes</json:string>
<json:string>plume materials</json:string>
<json:string>geographical dependences</json:string>
<json:string>mantle convective upwellings</json:string>
<json:string>ocean depths</json:string>
<json:string>hawaiian</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Shijie Zhong</name>
<affiliations>
<json:string>E-mail: szhong@colorado.edu</json:string>
<json:string>Department of Physics, University of Colorado, Colorado, Boulder, USA</json:string>
<json:string>E-mail: szhong@colorado.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael Ritzwoller</name>
<affiliations>
<json:string>Department of Physics, University of Colorado, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nikolai Shapiro</name>
<affiliations>
<json:string>Institut de Physique du Globe, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>William Landuyt</name>
<affiliations>
<json:string>Department of Geology and Geophysics, Yale University, Connecticut, New Haven, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jinshui Huang</name>
<affiliations>
<json:string>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paul Wessel</name>
<affiliations>
<json:string>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>seafloor topography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mantle plumes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>small‐scale convection</value>
</json:item>
</subject>
<articleId>
<json:string>2006JB004628</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8KH1HN0Z-S</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>11032</pdfWordCount>
<pdfCharCount>64729</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>330</abstractWordCount>
<abstractCharCount>2182</abstractCharCount>
<keywordCount>3</keywordCount>
</qualityIndicators>
<title>Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>112</volume>
<issue>B6</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>18</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Earth's interior: dynamics</value>
</json:item>
<json:item>
<value>MARINE GEOLOGY AND GEOPHYSICS</value>
</json:item>
<json:item>
<value>Oceanic plateaus and microcontinents</value>
</json:item>
<json:item>
<value>Seafloor morphology, geology, and geophysics</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Dynamics of lithosphere and mantle: general</value>
</json:item>
<json:item>
<value>Hotspots, large igneous provinces, and flood basalt volcanism</value>
</json:item>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2007</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>National Geophysics Data Center (NGDC)</json:string>
<json:string>NGDC</json:string>
<json:string>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</json:string>
<json:string>Department of Physics, University of Colorado, Boulder, Colorado, USA</json:string>
<json:string>University of Hawaii</json:string>
<json:string>Department of Geology and Geophysics</json:string>
<json:string>National Geophysics Data Center</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Yale University</json:string>
<json:string>Lucile Packard Foundation</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Ritsema</json:string>
<json:string>J. Geophys</json:string>
<json:string>Hager</json:string>
<json:string>M. Coffin</json:string>
<json:string>Pribac</json:string>
<json:string>Pacific Lithosphere</json:string>
<json:string>M. Ritzwoller</json:string>
<json:string>J. Huang</json:string>
<json:string>Cazenave</json:string>
<json:string>Nikolai Shapiro</json:string>
<json:string>Davies</json:string>
<json:string>Darwin Rise</json:string>
<json:string>Pacific Plate</json:string>
<json:string>J. Hillier</json:string>
<json:string>O’Connell</json:string>
<json:string>Megellan</json:string>
<json:string>Rise</json:string>
<json:string>William Landuyt</json:string>
<json:string>N. Shapiro</json:string>
<json:string>Paul Wessel</json:string>
<json:string>P. Wessel</json:string>
<json:string>G. Nolet</json:string>
<json:string>Marty</json:string>
<json:string>Pacific Ocean</json:string>
<json:string>Marshall-Gilbert Seamounts</json:string>
<json:string>Geoff Davies</json:string>
<json:string>Menard</json:string>
<json:string>W. Landuyt</json:string>
</persName>
<placeName>
<json:string>Honolulu</json:string>
<json:string>Model</json:string>
<json:string>Tonga</json:string>
<json:string>France</json:string>
<json:string>New Haven</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[61]</json:string>
<json:string>von Herzen et al., 1989</json:string>
<json:string>Malamud and Turcotte, 1999</json:string>
<json:string>Huang and Zhong, 2005</json:string>
<json:string>Brink and Brocher, 1987</json:string>
<json:string>Harris et al., 2000</json:string>
<json:string>van Hunen et al., 2005</json:string>
<json:string>[1964]</json:string>
<json:string>Panasyuk and Hager, 2000</json:string>
<json:string>[29]</json:string>
<json:string>Montelli et al., 2004</json:string>
<json:string>Muller et al. [1997]</json:string>
<json:string>Parsons and McKenzie, 1978</json:string>
<json:string>[1992]</json:string>
<json:string>Ritsema et al., 1999</json:string>
<json:string>Huang et al., 2003</json:string>
<json:string>[33]</json:string>
<json:string>Ritzwoller et al. (2004)</json:string>
<json:string>Doin and Fleitout, 2000</json:string>
<json:string>Ritsema et al. [1999]</json:string>
<json:string>Zhong and Watts, 2002</json:string>
<json:string>[54]</json:string>
<json:string>[1980]</json:string>
<json:string>Ribe and Christensen, 1994</json:string>
<json:string>[38]</json:string>
<json:string>Lister et al. [1990]</json:string>
<json:string>Coffin and Eldholm, 1994</json:string>
<json:string>[1984]</json:string>
<json:string>Leahy and Park, 2005</json:string>
<json:string>Yuen and Fleitout, 1985</json:string>
<json:string>Heestand and Crough, 1981</json:string>
<json:string>Caress et al., 1995</json:string>
<json:string>Montelli et al. [2006]</json:string>
<json:string>[48]</json:string>
<json:string>Hillier and Watts (2005)</json:string>
<json:string>Muller et al.</json:string>
<json:string>[2001]</json:string>
<json:string>[1977]</json:string>
<json:string>Hillier and Watts, 2005</json:string>
<json:string>[41]</json:string>
<json:string>Dumoulin et al., 2001</json:string>
<json:string>Davies and Pribac, 1993</json:string>
<json:string>Romanowicz and Gung, 2002</json:string>
<json:string>[1994]</json:string>
<json:string>Renkin and Sclater, 1988</json:string>
<json:string>Ritzwoller et al. [2004]</json:string>
<json:string>Montelli et al., 2006</json:string>
<json:string>Connell and Hager, 1980</json:string>
<json:string>Ritzwoller et al., 2004</json:string>
<json:string>Shapiro and Ritzwoller, 2004</json:string>
<json:string>Lithgow-Bertelloni and Silver, 1998</json:string>
<json:string>Lister et al., 1990</json:string>
<json:string>Wolfe et al., 1997</json:string>
<json:string>[2004, 2005]</json:string>
<json:string>Marty and Cazenave, 1989</json:string>
<json:string>Jellinek et al., 2003</json:string>
<json:string>[2000]</json:string>
<json:string>Davaille and Jaupart, 1994</json:string>
<json:string>Parsons and Sclater, 1977</json:string>
<json:string>[2]</json:string>
<json:string>[24]</json:string>
<json:string>Carlson and Johnson, 1994</json:string>
<json:string>Ritzwoller et al.</json:string>
<json:string>Moore et al., 1998</json:string>
<json:string>Smith and Sandwell, 1997</json:string>
<json:string>Crosby et al. [2006]</json:string>
<json:string>Courtillot et al., 2003</json:string>
<json:string>[2004]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8KH1HN0Z-S</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1029/2006JB004628</json:string>
</doi>
<id>128D126CB75215DDDC0CD54B1C441D5628AC82F7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2007 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2007-06"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
<title level="a" type="short">DEPTH‐AGE RELATION OF THE PACIFIC PLATE</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Shijie</forename>
<surname>Zhong</surname>
</persName>
<email>szhong@colorado.edu</email>
<affiliation>
<orgName>Department of Physics</orgName>
<orgName>University of Colorado</orgName>
<address>
<settlement type="city">Boulder</settlement>
<region>Colorado</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Michael</forename>
<surname>Ritzwoller</surname>
</persName>
<affiliation>
<orgName>Department of Physics</orgName>
<orgName>University of Colorado</orgName>
<address>
<settlement type="city">Boulder</settlement>
<region>Colorado</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Nikolai</forename>
<surname>Shapiro</surname>
</persName>
<affiliation>
<orgName>Institut de Physique du Globe</orgName>
<address>
<settlement type="city">Paris</settlement>
<country key="FR">France</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">William</forename>
<surname>Landuyt</surname>
</persName>
<affiliation>
<orgName>Department of Geology and Geophysics</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>Connecticut</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Jinshui</forename>
<surname>Huang</surname>
</persName>
<affiliation>
<orgName>Research School of Earth Sciences</orgName>
<orgName>Australian National University</orgName>
<address>
<settlement type="city">Canberra, ACT</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Paul</forename>
<surname>Wessel</surname>
</persName>
<affiliation>
<orgName>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology</orgName>
<orgName>University of Hawaii at Manoa</orgName>
<address>
<settlement type="city">Honolulu, Hawaii</settlement>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<idno type="istex">128D126CB75215DDDC0CD54B1C441D5628AC82F7</idno>
<idno type="ark">ark:/67375/WNG-8KH1HN0Z-S</idno>
<idno type="DOI">10.1029/2006JB004628</idno>
<idno type="editorialOffice">2006JB004628</idno>
<idno type="society">B06412</idno>
<idno type="unit">JGRB15087</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB15087.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v112.B6</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">112</biblScope>
<biblScope unit="issue">B6</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2007-06"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb15087-para-0001">A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrb15087-kwd-0001">seafloor topography</term>
<term xml:id="jgrb15087-kwd-0002">mantle plumes</term>
<term xml:id="jgrb15087-kwd-0003">small‐scale convection</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</classCode>
<keywords rend="articleCategory">
<term>Geodesy and Gravity/Tectonophysics</term>
</keywords>
<keywords rend="tocHeading1">
<term>Geodesy and Gravity/Tectonophysics</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb15087">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi>10.1002/jgrb.v112.B6</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="112">112</numbering>
<numbering type="journalIssue">B6</numbering>
</numberingGroup>
<coverDate startDate="2007-06">June 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="180" type="article" status="forIssue">
<doi>10.1029/2006JB004628</doi>
<idGroup>
<id type="editorialOffice" value="2006JB004628"></id>
<id type="society" value="B06412"></id>
<id type="unit" value="JGRB15087"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Geodesy and Gravity/Tectonophysics</title>
<title type="tocHeading1">Geodesy and Gravity/Tectonophysics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2007 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-07-13"></event>
<event type="manuscriptRevised" date="2007-01-10"></event>
<event type="manuscriptAccepted" date="2007-03-02"></event>
<event type="firstOnline" date="2007-06-21"></event>
<event type="publishedOnlineFinalForm" date="2007-06-21"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-01-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3038">Oceanic plateaus and microcontinents</subject>
<subject href="http://psi.agu.org/taxonomy5/3045">Seafloor morphology, geology, and geophysics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8120">Dynamics of lithosphere and mantle: general</subject>
<subject href="http://psi.agu.org/taxonomy5/8137">Hotspots, large igneous provinces, and flood basalt volcanism</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb15087-cit-0000" type="self">
<author>
<familyName>Zhong</familyName>
,
<givenNames>S.</givenNames>
</author>
,
<author>
<givenNames>M.</givenNames>
<familyName>Ritzwoller</familyName>
</author>
,
<author>
<givenNames>N.</givenNames>
<familyName>Shapiro</familyName>
</author>
,
<author>
<givenNames>W.</givenNames>
<familyName>Landuyt</familyName>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Huang</familyName>
</author>
, and
<author>
<givenNames>P.</givenNames>
<familyName>Wessel</familyName>
</author>
(
<pubYear year="2007">2007</pubYear>
),
<articleTitle>Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>112</vol>
, B06412, doi:
<accessionId ref="info:doi/10.1029/2006JB004628">10.1029/2006JB004628</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB15087.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="main">Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
<title type="short">DEPTH‐AGE RELATION OF THE PACIFIC PLATE</title>
<title type="shortAuthors">Zhong
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrb15087-cr-0001" affiliationRef="#jgrb15087-aff-0001">
<personName>
<givenNames>Shijie</givenNames>
<familyName>Zhong</familyName>
</personName>
<contactDetails>
<email normalForm="szhong@colorado.edu">szhong@colorado.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrb15087-cr-0002" affiliationRef="#jgrb15087-aff-0001">
<personName>
<givenNames>Michael</givenNames>
<familyName>Ritzwoller</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb15087-cr-0003" affiliationRef="#jgrb15087-aff-0002">
<personName>
<givenNames>Nikolai</givenNames>
<familyName>Shapiro</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb15087-cr-0004" affiliationRef="#jgrb15087-aff-0003">
<personName>
<givenNames>William</givenNames>
<familyName>Landuyt</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb15087-cr-0005" affiliationRef="#jgrb15087-aff-0004">
<personName>
<givenNames>Jinshui</givenNames>
<familyName>Huang</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb15087-cr-0006" affiliationRef="#jgrb15087-aff-0005">
<personName>
<givenNames>Paul</givenNames>
<familyName>Wessel</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrb15087-aff-0001">
<orgDiv>Department of Physics</orgDiv>
<orgName>University of Colorado</orgName>
<address>
<city>Boulder</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrb15087-aff-0002">
<orgName>Institut de Physique du Globe</orgName>
<address>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrb15087-aff-0003">
<orgDiv>Department of Geology and Geophysics</orgDiv>
<orgName>Yale University</orgName>
<address>
<city>New Haven</city>
<countryPart>Connecticut</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="AU" type="organization" xml:id="jgrb15087-aff-0004">
<orgDiv>Research School of Earth Sciences</orgDiv>
<orgName>Australian National University</orgName>
<address>
<city>Canberra, ACT</city>
<country>Australia</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrb15087-aff-0005">
<orgDiv>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology</orgDiv>
<orgName>University of Hawaii at Manoa</orgName>
<address>
<city>Honolulu, Hawaii</city>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb15087-kwd-0001">seafloor topography</keyword>
<keyword xml:id="jgrb15087-kwd-0002">mantle plumes</keyword>
<keyword xml:id="jgrb15087-kwd-0003">small‐scale convection</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb15087-para-0001" label="1">A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>DEPTH‐AGE RELATION OF THE PACIFIC PLATE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shijie</namePart>
<namePart type="family">Zhong</namePart>
<affiliation>E-mail: szhong@colorado.edu</affiliation>
<affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</affiliation>
<affiliation>E-mail: szhong@colorado.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Ritzwoller</namePart>
<affiliation>Department of Physics, University of Colorado, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Shapiro</namePart>
<affiliation>Institut de Physique du Globe, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Landuyt</namePart>
<affiliation>Department of Geology and Geophysics, Yale University, Connecticut, New Haven, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinshui</namePart>
<namePart type="family">Huang</namePart>
<affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Wessel</namePart>
<affiliation>Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2007-06</dateIssued>
<dateCaptured encoding="w3cdtf">2006-07-13</dateCaptured>
<dateValid encoding="w3cdtf">2007-03-02</dateValid>
<edition>Zhong, S., M. Ritzwoller, N. Shapiro, W. Landuyt, J. Huang, and P. Wessel (2007), Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics, J. Geophys. Res., 112, B06412, doi:10.1029/2006JB004628.</edition>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">10</extent>
</physicalDescription>
<abstract>A long‐standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half‐space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small‐scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high‐resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super‐swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC‐Plate depth‐age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth‐age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC‐Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super‐swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super‐swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.</abstract>
<subject>
<genre>keywords</genre>
<topic>seafloor topography</topic>
<topic>mantle plumes</topic>
<topic>small‐scale convection</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3038">Oceanic plateaus and microcontinents</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3045">Seafloor morphology, geology, and geophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8120">Dynamics of lithosphere and mantle: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8137">Hotspots, large igneous provinces, and flood basalt volcanism</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Geodesy and Gravity/Tectonophysics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>112</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B6</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">128D126CB75215DDDC0CD54B1C441D5628AC82F7</identifier>
<identifier type="ark">ark:/67375/WNG-8KH1HN0Z-S</identifier>
<identifier type="DOI">10.1029/2006JB004628</identifier>
<identifier type="ArticleID">2006JB004628</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2007 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/128D126CB75215DDDC0CD54B1C441D5628AC82F7/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000354 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000354 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:128D126CB75215DDDC0CD54B1C441D5628AC82F7
   |texte=   Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024