Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System

Identifieur interne : 000345 ( Istex/Corpus ); précédent : 000344; suivant : 000346

Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System

Auteurs : Cécile Dufour ; Didier Casane ; Derek Denton ; Jean Wickings ; Pierre Corvol ; Xavier Jeunemaitre

Source :

RBID : ISTEX:11CFDAB785FDAB7DF67F06A969891D282A0E5014

English descriptors

Abstract

Abstract: The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.

Url:
DOI: 10.1006/geno.2000.6313

Links to Exploration step

ISTEX:11CFDAB785FDAB7DF67F06A969891D282A0E5014

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
<author>
<name sortKey="Dufour, Cecile" sort="Dufour, Cecile" uniqKey="Dufour C" first="Cécile" last="Dufour">Cécile Dufour</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casane, Didier" sort="Casane, Didier" uniqKey="Casane D" first="Didier" last="Casane">Didier Casane</name>
<affiliation>
<mods:affiliation>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denton, Derek" sort="Denton, Derek" uniqKey="Denton D" first="Derek" last="Denton">Derek Denton</name>
<affiliation>
<mods:affiliation>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wickings, Jean" sort="Wickings, Jean" uniqKey="Wickings J" first="Jean" last="Wickings">Jean Wickings</name>
<affiliation>
<mods:affiliation>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corvol, Pierre" sort="Corvol, Pierre" uniqKey="Corvol P" first="Pierre" last="Corvol">Pierre Corvol</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:11CFDAB785FDAB7DF67F06A969891D282A0E5014</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/geno.2000.6313</idno>
<idno type="url">https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000345</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
<author>
<name sortKey="Dufour, Cecile" sort="Dufour, Cecile" uniqKey="Dufour C" first="Cécile" last="Dufour">Cécile Dufour</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casane, Didier" sort="Casane, Didier" uniqKey="Casane D" first="Didier" last="Casane">Didier Casane</name>
<affiliation>
<mods:affiliation>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denton, Derek" sort="Denton, Derek" uniqKey="Denton D" first="Derek" last="Denton">Derek Denton</name>
<affiliation>
<mods:affiliation>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wickings, Jean" sort="Wickings, Jean" uniqKey="Wickings J" first="Jean" last="Wickings">Jean Wickings</name>
<affiliation>
<mods:affiliation>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corvol, Pierre" sort="Corvol, Pierre" uniqKey="Corvol P" first="Pierre" last="Corvol">Pierre Corvol</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<mods:affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Genomics</title>
<title level="j" type="abbrev">YGENO</title>
<idno type="ISSN">0888-7543</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">69</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="14">14</biblScope>
<biblScope unit="page" to="26">26</biblScope>
</imprint>
<idno type="ISSN">0888-7543</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0888-7543</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agtr1</term>
<term>Agtr1 gene</term>
<term>Agtr1 genes</term>
<term>Allele</term>
<term>Amino</term>
<term>Amino acid replacement</term>
<term>Ancestral alleles</term>
<term>Angiotensin</term>
<term>Anking</term>
<term>Anking regions</term>
<term>Anking sequences</term>
<term>Blood pressure</term>
<term>Cambien</term>
<term>Candidate genes</term>
<term>Chimpanzee</term>
<term>Coding</term>
<term>Coding sequence</term>
<term>Coding sites</term>
<term>Codon</term>
<term>Common chimpanzees</term>
<term>Corvol</term>
<term>Dcp1</term>
<term>Dcp1 gene</term>
<term>Deletion polymorphism</term>
<term>Dufour</term>
<term>Essential hypertension</term>
<term>Exon</term>
<term>Gene</term>
<term>Genet</term>
<term>Genetic variation</term>
<term>Genome</term>
<term>Genomic</term>
<term>Genomic structure</term>
<term>Halushka</term>
<term>High content</term>
<term>Human dcp1 gene</term>
<term>Human genes</term>
<term>Human hypertension</term>
<term>Human snps</term>
<term>Hypertension</term>
<term>Intron</term>
<term>Jeunemaitre</term>
<term>Major genes</term>
<term>Mutation</term>
<term>Mutational</term>
<term>Mutational bias</term>
<term>Mutational pressure</term>
<term>Myocardial infarction</term>
<term>Noncoding</term>
<term>Noncoding regions</term>
<term>Noncoding sites</term>
<term>Nonsynonymous</term>
<term>Nonsynonymous sites</term>
<term>Nucleotide</term>
<term>Nucleotide diversity</term>
<term>Nucleotide positions</term>
<term>Nucleotide variations</term>
<term>Polymorphic</term>
<term>Polymorphism</term>
<term>Primer</term>
<term>Recherche medicale</term>
<term>Regulatory region</term>
<term>Renin</term>
<term>Renin angiotensin system</term>
<term>Sequence variation</term>
<term>Sequencing</term>
<term>Snp</term>
<term>Soubrier</term>
<term>Substitution</term>
<term>Substitution rate</term>
<term>Synonymous</term>
<term>Synonymous noncoding nonsynonymous</term>
<term>Synonymous sites</term>
<term>Third position</term>
<term>Variant</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Agtr1</term>
<term>Agtr1 gene</term>
<term>Agtr1 genes</term>
<term>Allele</term>
<term>Amino</term>
<term>Amino acid replacement</term>
<term>Ancestral alleles</term>
<term>Angiotensin</term>
<term>Anking</term>
<term>Anking regions</term>
<term>Anking sequences</term>
<term>Blood pressure</term>
<term>Cambien</term>
<term>Candidate genes</term>
<term>Chimpanzee</term>
<term>Coding</term>
<term>Coding sequence</term>
<term>Coding sites</term>
<term>Codon</term>
<term>Common chimpanzees</term>
<term>Corvol</term>
<term>Dcp1</term>
<term>Dcp1 gene</term>
<term>Deletion polymorphism</term>
<term>Dufour</term>
<term>Essential hypertension</term>
<term>Exon</term>
<term>Gene</term>
<term>Genet</term>
<term>Genetic variation</term>
<term>Genome</term>
<term>Genomic</term>
<term>Genomic structure</term>
<term>Halushka</term>
<term>High content</term>
<term>Human dcp1 gene</term>
<term>Human genes</term>
<term>Human hypertension</term>
<term>Human snps</term>
<term>Hypertension</term>
<term>Intron</term>
<term>Jeunemaitre</term>
<term>Major genes</term>
<term>Mutation</term>
<term>Mutational</term>
<term>Mutational bias</term>
<term>Mutational pressure</term>
<term>Myocardial infarction</term>
<term>Noncoding</term>
<term>Noncoding regions</term>
<term>Noncoding sites</term>
<term>Nonsynonymous</term>
<term>Nonsynonymous sites</term>
<term>Nucleotide</term>
<term>Nucleotide diversity</term>
<term>Nucleotide positions</term>
<term>Nucleotide variations</term>
<term>Polymorphic</term>
<term>Polymorphism</term>
<term>Primer</term>
<term>Recherche medicale</term>
<term>Regulatory region</term>
<term>Renin</term>
<term>Renin angiotensin system</term>
<term>Sequence variation</term>
<term>Sequencing</term>
<term>Snp</term>
<term>Soubrier</term>
<term>Substitution</term>
<term>Substitution rate</term>
<term>Synonymous</term>
<term>Synonymous noncoding nonsynonymous</term>
<term>Synonymous sites</term>
<term>Third position</term>
<term>Variant</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>chimpanzee</json:string>
<json:string>dcp1</json:string>
<json:string>noncoding</json:string>
<json:string>mutation</json:string>
<json:string>polymorphism</json:string>
<json:string>nonsynonymous</json:string>
<json:string>agtr1</json:string>
<json:string>exon</json:string>
<json:string>polymorphic</json:string>
<json:string>angiotensin</json:string>
<json:string>nucleotide diversity</json:string>
<json:string>hypertension</json:string>
<json:string>sequence variation</json:string>
<json:string>genet</json:string>
<json:string>synonymous sites</json:string>
<json:string>corvol</json:string>
<json:string>nucleotide</json:string>
<json:string>genomic</json:string>
<json:string>renin</json:string>
<json:string>codon</json:string>
<json:string>snp</json:string>
<json:string>allele</json:string>
<json:string>candidate genes</json:string>
<json:string>anking</json:string>
<json:string>soubrier</json:string>
<json:string>genome</json:string>
<json:string>sequencing</json:string>
<json:string>dcp1 gene</json:string>
<json:string>primer</json:string>
<json:string>substitution rate</json:string>
<json:string>jeunemaitre</json:string>
<json:string>nucleotide positions</json:string>
<json:string>dufour</json:string>
<json:string>noncoding sites</json:string>
<json:string>cambien</json:string>
<json:string>halushka</json:string>
<json:string>nonsynonymous sites</json:string>
<json:string>intron</json:string>
<json:string>gene</json:string>
<json:string>high content</json:string>
<json:string>amino</json:string>
<json:string>agtr1 genes</json:string>
<json:string>human snps</json:string>
<json:string>blood pressure</json:string>
<json:string>amino acid replacement</json:string>
<json:string>regulatory region</json:string>
<json:string>nucleotide variations</json:string>
<json:string>agtr1 gene</json:string>
<json:string>anking sequences</json:string>
<json:string>substitution</json:string>
<json:string>mutational</json:string>
<json:string>renin angiotensin system</json:string>
<json:string>ancestral alleles</json:string>
<json:string>mutational bias</json:string>
<json:string>mutational pressure</json:string>
<json:string>essential hypertension</json:string>
<json:string>genomic structure</json:string>
<json:string>coding</json:string>
<json:string>coding sequence</json:string>
<json:string>deletion polymorphism</json:string>
<json:string>anking regions</json:string>
<json:string>human genes</json:string>
<json:string>genetic variation</json:string>
<json:string>myocardial infarction</json:string>
<json:string>major genes</json:string>
<json:string>coding sites</json:string>
<json:string>recherche medicale</json:string>
<json:string>synonymous noncoding nonsynonymous</json:string>
<json:string>human dcp1 gene</json:string>
<json:string>third position</json:string>
<json:string>noncoding regions</json:string>
<json:string>common chimpanzees</json:string>
<json:string>human hypertension</json:string>
<json:string>synonymous</json:string>
<json:string>variant</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Cécile Dufour</name>
<affiliations>
<json:string>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Didier Casane</name>
<affiliations>
<json:string>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Derek Denton</name>
<affiliations>
<json:string>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean Wickings</name>
<affiliations>
<json:string>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</json:string>
</affiliations>
</json:item>
<json:item>
<name>Pierre Corvol</name>
<affiliations>
<json:string>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xavier Jeunemaitre</name>
<affiliations>
<json:string>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-MBFSGLR5-2</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>289</abstractWordCount>
<abstractCharCount>1952</abstractCharCount>
<keywordCount>0</keywordCount>
<score>10</score>
<pdfWordCount>6371</pdfWordCount>
<pdfCharCount>38784</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>553 x 736 pts</pdfPageSize>
</qualityIndicators>
<title>Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
<pmid>
<json:string>11013071</json:string>
</pmid>
<pii>
<json:string>S0888-7543(00)96313-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Genomics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0888-7543</json:string>
</issn>
<pii>
<json:string>S0888-7543(00)X0020-1</json:string>
</pii>
<volume>69</volume>
<issue>1</issue>
<pages>
<first>14</first>
<last>26</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Melbourne</json:string>
<json:string>Institute of Experimental Physiology and Medicine</json:string>
<json:string>Mathers Charitable Foundation</json:string>
<json:string>Fondation</json:string>
</orgName>
<orgName_funder>
<json:string>Fondation</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Jean Wickings</json:string>
<json:string>Robert J. Jnr</json:string>
<json:string>Sandra Disse</json:string>
<json:string>Christine Hubert</json:string>
<json:string>Cecile Dufour</json:string>
<json:string>Didier Casane</json:string>
<json:string>Xavier Jeunemaitre</json:string>
<json:string>REN Polymorphic</json:string>
<json:string>Pierre Corvol</json:string>
<json:string>Howard Florey</json:string>
<json:string>Florent Soubrier</json:string>
<json:string>Jerome Celerier</json:string>
<json:string>By</json:string>
<json:string>Derek Denton</json:string>
</persName>
<placeName>
<json:string>Paris</json:string>
<json:string>Australia</json:string>
<json:string>Mannheim</json:string>
<json:string>France</json:string>
<json:string>Gabon</json:string>
</placeName>
<ref_url>
<json:string>http://www.idealibrary.com</json:string>
</ref_url>
<ref_bibl>
<json:string>Powell and Moriyama, 1997</json:string>
<json:string>Inoue et al., 1997</json:string>
<json:string>Sharma, 1998</json:string>
<json:string>Cargill et al., 1999</json:string>
<json:string>Germain et al., 1998</json:string>
<json:string>Jeunemaitre et al., 1992</json:string>
<json:string>Halushka et al., (1999)</json:string>
<json:string>Eyre-Walker, 1999</json:string>
<json:string>Nickerson et al., 1997</json:string>
<json:string>Lawlor et al., 1988</json:string>
<json:string>Hubert et al., 1991</json:string>
<json:string>Yang et al., 1996</json:string>
<json:string>Cambien et al. (1999)</json:string>
<json:string>Jeunemaitre et al. (1992)</json:string>
<json:string>Halushka et al. (1999)</json:string>
<json:string>Ohishi et al., 1993</json:string>
<json:string>Guo and Inagami 1994</json:string>
<json:string>Curnow et al. 1995</json:string>
<json:string>Marian et al., 1993</json:string>
<json:string>Rigat et al., 1990</json:string>
<json:string>Ward, 1990</json:string>
<json:string>Keavney et al., 2000</json:string>
<json:string>Soubrier et al., 1988</json:string>
<json:string>Hardman et al., 1984</json:string>
<json:string>Hacia et al. (1999)</json:string>
<json:string>Eyre-Walker, 1997</json:string>
<json:string>Cambien et al., 1999</json:string>
<json:string>Rieder et al. (1999)</json:string>
<json:string>Bernardi, 1995</json:string>
<json:string>Hamdi et al., 1999</json:string>
<json:string>Farrall et al., 1999</json:string>
<json:string>Halushka et al., 1999</json:string>
<json:string>Gaillard et al., 1989</json:string>
<json:string>Ioerger et al., 1990</json:string>
<json:string>Lattion et al., 1989</json:string>
<json:string>Duret and Mouchiroud, 1999</json:string>
<json:string>Casane et al., 1997</json:string>
<json:string>Corvol et al., 1997</json:string>
<json:string>Celerier et al., 2000</json:string>
<json:string>Rieder et al., 1999</json:string>
<json:string>Cambien et al., 1992</json:string>
<json:string>Li, 1997</json:string>
<json:string>Lander, 1996</json:string>
<json:string>Denton et al., 1995</json:string>
<json:string>Pickering, 1973</json:string>
<json:string>Cargill et al. (1999)</json:string>
<json:string>Schunkert et al., 1994</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-MBFSGLR5-2</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - genetics & heredity</json:string>
<json:string>2 - biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - genetics & heredity</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1006/geno.2000.6313</json:string>
</doi>
<id>11CFDAB785FDAB7DF67F06A969891D282A0E5014</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Academic Press</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note>Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession Nos. AF193444–AF193487.</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Cécile</forename>
<surname>Dufour</surname>
</persName>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Didier</forename>
<surname>Casane</surname>
</persName>
<affiliation>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Derek</forename>
<surname>Denton</surname>
</persName>
<affiliation>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Jean</forename>
<surname>Wickings</surname>
</persName>
<affiliation>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Pierre</forename>
<surname>Corvol</surname>
</persName>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Xavier</forename>
<surname>Jeunemaitre</surname>
</persName>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
</author>
<idno type="istex">11CFDAB785FDAB7DF67F06A969891D282A0E5014</idno>
<idno type="DOI">10.1006/geno.2000.6313</idno>
<idno type="PII">S0888-7543(00)96313-4</idno>
</analytic>
<monogr>
<title level="j">Genomics</title>
<title level="j" type="abbrev">YGENO</title>
<idno type="pISSN">0888-7543</idno>
<idno type="PII">S0888-7543(00)X0020-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">69</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="14">14</biblScope>
<biblScope unit="page" to="26">26</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YGENO</jid>
<aid>96313</aid>
<ce:pii>S0888-7543(00)96313-4</ce:pii>
<ce:doi>10.1006/geno.2000.6313</ce:doi>
<ce:copyright type="full-transfer" year="2000">Academic Press</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession Nos. AF193444–AF193487.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Cécile</ce:given-name>
<ce:surname>Dufour</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Didier</ce:given-name>
<ce:surname>Casane</ce:surname>
<ce:cross-ref refid="A2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Derek</ce:given-name>
<ce:surname>Denton</ce:surname>
<ce:cross-ref refid="A3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jean</ce:given-name>
<ce:surname>Wickings</ce:surname>
<ce:cross-ref refid="A4">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Pierre</ce:given-name>
<ce:surname>Corvol</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Xavier</ce:given-name>
<ce:surname>Jeunemaitre</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="A1">
<ce:label>a</ce:label>
<ce:textfn>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A2">
<ce:label>b</ce:label>
<ce:textfn>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A3">
<ce:label>c</ce:label>
<ce:textfn>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A4">
<ce:label>d</ce:label>
<ce:textfn>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>To whom correspondence should be addressed. Telephone: 33 1 44 27 16 75. Fax: 33 1 44 27 16 91. E-mail: ceciledufour@hotmail.com.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="17" month="4" year="2000"></ce:date-received>
<ce:date-accepted day="28" month="6" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes
<ce:italic>AGT, REN, DCP1,</ce:italic>
and
<ce:italic>AGTR1,</ce:italic>
respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the
<ce:italic>AGT</ce:italic>
gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the
<ce:italic>AGTR1</ce:italic>
gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the
<ce:italic>DCP1</ce:italic>
gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cécile</namePart>
<namePart type="family">Dufour</namePart>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
<description>To whom correspondence should be addressed. Telephone: 33 1 44 27 16 75. Fax: 33 1 44 27 16 91. E-mail: ceciledufour@hotmail.com.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Didier</namePart>
<namePart type="family">Casane</namePart>
<affiliation>Equipe “phylogénie et évolution moléculaires,” UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud, 91405, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Denton</namePart>
<affiliation>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, 3052, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Wickings</namePart>
<affiliation>Centre International de Recherche Médicale, Franceville, BP 769, Gabon</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Corvol</namePart>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Jeunemaitre</namePart>
<affiliation>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5′ and 3′ untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</abstract>
<note>Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession Nos. AF193444–AF193487.</note>
<note type="content">Section title: Regular Article</note>
<relatedItem type="host">
<titleInfo>
<title>Genomics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YGENO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20001001</dateIssued>
</originInfo>
<identifier type="ISSN">0888-7543</identifier>
<identifier type="PII">S0888-7543(00)X0020-1</identifier>
<part>
<date>20001001</date>
<detail type="volume">
<number>69</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>149</end>
</extent>
<extent unit="pages">
<start>14</start>
<end>26</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">11CFDAB785FDAB7DF67F06A969891D282A0E5014</identifier>
<identifier type="ark">ark:/67375/6H6-MBFSGLR5-2</identifier>
<identifier type="DOI">10.1006/geno.2000.6313</identifier>
<identifier type="PII">S0888-7543(00)96313-4</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/11CFDAB785FDAB7DF67F06A969891D282A0E5014/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000345 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000345 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:11CFDAB785FDAB7DF67F06A969891D282A0E5014
   |texte=   Human–Chimpanzee DNA Sequence Variation in the Four Major Genes of the Renin Angiotensin System
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024