Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)

Identifieur interne : 001642 ( Istex/Checkpoint ); précédent : 001641; suivant : 001643

Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)

Auteurs : Fabien Aubret [France] ; Gordon M. Burghardt [États-Unis] ; Ste Phanie Maumelat ; Xavier Bonnet [France] ; Don Bradshaw

Source :

RBID : ISTEX:BD313A2B8B61458172DBAE63E7F94F9495AD4997

Descripteurs français

English descriptors

Abstract

Variations at both the genetic and phenotypic levels play an important role in responses to food and food-related stimuli. Knowledge of such variations is crucial to understanding how populations adapt to changing environments. We investigated the dietary preferences of 2 tiger snake populations and compared the responses of diet-naive animals (laboratory-born neonates), diet-controlled animals (laboratory-reared juveniles), and natural diet–experienced animals (wild-caught adults) to visual and chemical cues from 6 prey types (mouse, skink, silver gull, chicken, shearwater, and frog). The mainland population inhabits a swamp, feeds mostly on frogs, and suffers heavy predation. The second population inhabits a small nearby offshore island with no standing water (no frogs); feeds mostly on skinks, mice, and, as adults, silver gull chicks; and suffers no known predation. Although different prey are eaten in the 2 populations, adult wild-caught snakes from both populations showed a significant preference for 3 types of prey (frog, mouse, and chick), irrespective of their natural diet. Neonates responded to all prey cues more than they did to control stimuli in both populations. However, the island neonates showed significantly higher interest in silver gull chick stimuli (the main prey of the island adult snakes) than did their mainland conspecifics. Laboratory-bred juveniles displayed behavioral plasticity by significantly increasing their response to mice after being fed baby mice for 7 months. We conclude that genetic-based differences in food-related cues are important in tiger snakes but that they are also capable of behavioral plasticity. Island adult and neonate snakes exhibited responses to prey types no longer consumed naturally (frog), suggesting that behavioral characters may have been retained for long periods under relaxed selection. Island neonates showed a strong interest in a novel prey item (silver gull). This result complements previous work describing how island snakes have developed the ability to swallow larger prey than usual, as well as seemingly developing a taste for them.

Url:
DOI: 10.1093/beheco/arl004


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:BD313A2B8B61458172DBAE63E7F94F9495AD4997

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)</title>
<author>
<name sortKey="Aubret, Fabien" sort="Aubret, Fabien" uniqKey="Aubret F" first="Fabien" last="Aubret">Fabien Aubret</name>
</author>
<author>
<name sortKey="Burghardt, Gordon M" sort="Burghardt, Gordon M" uniqKey="Burghardt G" first="Gordon M." last="Burghardt">Gordon M. Burghardt</name>
</author>
<author>
<name sortKey="Maumelat, Ste Phanie" sort="Maumelat, Ste Phanie" uniqKey="Maumelat S" first="Ste Phanie" last="Maumelat">Ste Phanie Maumelat</name>
</author>
<author>
<name sortKey="Bonnet, Xavier" sort="Bonnet, Xavier" uniqKey="Bonnet X" first="Xavier" last="Bonnet">Xavier Bonnet</name>
</author>
<author>
<name sortKey="Bradshaw, Don" sort="Bradshaw, Don" uniqKey="Bradshaw D" first="Don" last="Bradshaw">Don Bradshaw</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BD313A2B8B61458172DBAE63E7F94F9495AD4997</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1093/beheco/arl004</idno>
<idno type="url">https://api.istex.fr/document/BD313A2B8B61458172DBAE63E7F94F9495AD4997/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002331</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002331</idno>
<idno type="wicri:Area/Istex/Curation">002331</idno>
<idno type="wicri:Area/Istex/Checkpoint">001642</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001642</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)</title>
<author>
<name sortKey="Aubret, Fabien" sort="Aubret, Fabien" uniqKey="Aubret F" first="Fabien" last="Aubret">Fabien Aubret</name>
<affiliation></affiliation>
<affiliation></affiliation>
<affiliation wicri:level="4">
<orgName type="university">Université de Poitiers</orgName>
<country>France</country>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Burghardt, Gordon M" sort="Burghardt, Gordon M" uniqKey="Burghardt G" first="Gordon M." last="Burghardt">Gordon M. Burghardt</name>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maumelat, Ste Phanie" sort="Maumelat, Ste Phanie" uniqKey="Maumelat S" first="Ste Phanie" last="Maumelat">Ste Phanie Maumelat</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bonnet, Xavier" sort="Bonnet, Xavier" uniqKey="Bonnet X" first="Xavier" last="Bonnet">Xavier Bonnet</name>
<affiliation></affiliation>
<affiliation wicri:level="4">
<orgName type="university">Université de Poitiers</orgName>
<country>France</country>
<placeName>
<settlement type="city">Poitiers</settlement>
<region type="region" nuts="2">Poitou-Charentes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bradshaw, Don" sort="Bradshaw, Don" uniqKey="Bradshaw D" first="Don" last="Bradshaw">Don Bradshaw</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Behavioral Ecology</title>
<title level="j" type="abbrev">Behavioral Ecology</title>
<idno type="ISSN">1045-2249</idno>
<idno type="eISSN">1465-7279</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2006-NaN">2006-NaN</date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="716">716</biblScope>
<biblScope unit="page" to="725">725</biblScope>
</imprint>
<idno type="ISSN">1045-2249</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1045-2249</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult snakes</term>
<term>Adult tiger snakes</term>
<term>Ancestral preferences</term>
<term>Animal behavior</term>
<term>Anova</term>
<term>Anova design</term>
<term>Apparent decoupling</term>
<term>Approaches frog</term>
<term>Aubret</term>
<term>Australian tiger snakes</term>
<term>Baby mice</term>
<term>Behavioral</term>
<term>Behavioral characters</term>
<term>Behavioral ecology</term>
<term>Behavioral plasticity</term>
<term>Behavioral variation</term>
<term>Bird species</term>
<term>Body condition</term>
<term>Body condition index</term>
<term>Body mass</term>
<term>Body size</term>
<term>Bonnet</term>
<term>Burghardt</term>
<term>Carnac</term>
<term>Carnac island</term>
<term>Carnac island neonates</term>
<term>Carnac island snakes</term>
<term>Chick</term>
<term>Chicken time</term>
<term>Control stimuli</term>
<term>Cue</term>
<term>Dead mice</term>
<term>Dietary experience</term>
<term>Dietary preferences</term>
<term>Different diets</term>
<term>Different level</term>
<term>Different prey</term>
<term>Different prey items</term>
<term>Different stimuli</term>
<term>Disjunct populations</term>
<term>Ecol</term>
<term>Ecology</term>
<term>Evolution arnold</term>
<term>Evolutionary mechanisms</term>
<term>Experimental room</term>
<term>Foraging behavior</term>
<term>Frog</term>
<term>Garter snake</term>
<term>Garter snakes</term>
<term>Geographic variation</term>
<term>Gull</term>
<term>Herdsman</term>
<term>Herdsman lake</term>
<term>Herdsman lake individuals</term>
<term>Herdsman lake neonates</term>
<term>Herdsman lake snakes</term>
<term>House mice</term>
<term>Initial responses</term>
<term>Interaction term</term>
<term>Island neonates</term>
<term>Juvenile snakes</term>
<term>Krause</term>
<term>Larger prey</term>
<term>Litter</term>
<term>Little divergence</term>
<term>Lled bars</term>
<term>Long periods</term>
<term>Lower tfass</term>
<term>Main prey</term>
<term>Mainland populations</term>
<term>Mouse</term>
<term>Mouse samples</term>
<term>Mouse time</term>
<term>Multiple range test</term>
<term>Naive neonates</term>
<term>Natural populations</term>
<term>Natural prey</term>
<term>Neonate</term>
<term>Neonate tiger snakes</term>
<term>Notechis</term>
<term>Notechis scutatus</term>
<term>Novel prey</term>
<term>Offshore islands</term>
<term>Ontogenetic processes</term>
<term>Open bars</term>
<term>Other hand</term>
<term>Other items</term>
<term>Overall difference</term>
<term>Overall level</term>
<term>Oxford university press</term>
<term>Phenotypic</term>
<term>Plastic boxes</term>
<term>Potential prey</term>
<term>Preference</term>
<term>Previous work</term>
<term>Prey</term>
<term>Prey item</term>
<term>Prey items</term>
<term>Prey preferences</term>
<term>Prey samples</term>
<term>Prey stimuli</term>
<term>Prey stimulus</term>
<term>Prey type</term>
<term>Prey types</term>
<term>Probability values</term>
<term>Quantitative genetics</term>
<term>Recent study</term>
<term>Reptile</term>
<term>Same individuals</term>
<term>Second measure</term>
<term>Selective advantage</term>
<term>Several litters</term>
<term>Shearwater</term>
<term>Silver gull</term>
<term>Silver gull chicks</term>
<term>Silver gulls</term>
<term>Similar tfass</term>
<term>Single prey</term>
<term>Skink</term>
<term>Skink control herdsman lake chicken</term>
<term>Skink mouse frog chicken</term>
<term>Skink samples</term>
<term>Standard error</term>
<term>Stimuli carnac island stimuli mouse frog frog chicken</term>
<term>Strainer</term>
<term>Tfas</term>
<term>Tfass</term>
<term>Thamnophis elegans</term>
<term>Thamnophis sirtalis</term>
<term>Tiger</term>
<term>Tiger snakes</term>
<term>Time scores</term>
<term>Variable environments</term>
<term>Various prey items</term>
<term>Various stimuli</term>
<term>Vipera berus</term>
<term>Water dish</term>
<term>West aust</term>
<term>Western australia</term>
<term>Western australia press</term>
<term>Wilcoxon tests</term>
<term>island</term>
<term>plasticity</term>
<term>preferences</term>
<term>prey</term>
<term>snake</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adult snakes</term>
<term>Adult tiger snakes</term>
<term>Ancestral preferences</term>
<term>Animal behavior</term>
<term>Anova</term>
<term>Anova design</term>
<term>Apparent decoupling</term>
<term>Approaches frog</term>
<term>Aubret</term>
<term>Australian tiger snakes</term>
<term>Baby mice</term>
<term>Behavioral</term>
<term>Behavioral characters</term>
<term>Behavioral ecology</term>
<term>Behavioral plasticity</term>
<term>Behavioral variation</term>
<term>Bird species</term>
<term>Body condition</term>
<term>Body condition index</term>
<term>Body mass</term>
<term>Body size</term>
<term>Bonnet</term>
<term>Burghardt</term>
<term>Carnac</term>
<term>Carnac island</term>
<term>Carnac island neonates</term>
<term>Carnac island snakes</term>
<term>Chick</term>
<term>Chicken time</term>
<term>Control stimuli</term>
<term>Cue</term>
<term>Dead mice</term>
<term>Dietary experience</term>
<term>Dietary preferences</term>
<term>Different diets</term>
<term>Different level</term>
<term>Different prey</term>
<term>Different prey items</term>
<term>Different stimuli</term>
<term>Disjunct populations</term>
<term>Ecol</term>
<term>Ecology</term>
<term>Evolution arnold</term>
<term>Evolutionary mechanisms</term>
<term>Experimental room</term>
<term>Foraging behavior</term>
<term>Frog</term>
<term>Garter snake</term>
<term>Garter snakes</term>
<term>Geographic variation</term>
<term>Gull</term>
<term>Herdsman</term>
<term>Herdsman lake</term>
<term>Herdsman lake individuals</term>
<term>Herdsman lake neonates</term>
<term>Herdsman lake snakes</term>
<term>House mice</term>
<term>Initial responses</term>
<term>Interaction term</term>
<term>Island neonates</term>
<term>Juvenile snakes</term>
<term>Krause</term>
<term>Larger prey</term>
<term>Litter</term>
<term>Little divergence</term>
<term>Lled bars</term>
<term>Long periods</term>
<term>Lower tfass</term>
<term>Main prey</term>
<term>Mainland populations</term>
<term>Mouse</term>
<term>Mouse samples</term>
<term>Mouse time</term>
<term>Multiple range test</term>
<term>Naive neonates</term>
<term>Natural populations</term>
<term>Natural prey</term>
<term>Neonate</term>
<term>Neonate tiger snakes</term>
<term>Notechis</term>
<term>Notechis scutatus</term>
<term>Novel prey</term>
<term>Offshore islands</term>
<term>Ontogenetic processes</term>
<term>Open bars</term>
<term>Other hand</term>
<term>Other items</term>
<term>Overall difference</term>
<term>Overall level</term>
<term>Oxford university press</term>
<term>Phenotypic</term>
<term>Plastic boxes</term>
<term>Potential prey</term>
<term>Preference</term>
<term>Previous work</term>
<term>Prey</term>
<term>Prey item</term>
<term>Prey items</term>
<term>Prey preferences</term>
<term>Prey samples</term>
<term>Prey stimuli</term>
<term>Prey stimulus</term>
<term>Prey type</term>
<term>Prey types</term>
<term>Probability values</term>
<term>Quantitative genetics</term>
<term>Recent study</term>
<term>Reptile</term>
<term>Same individuals</term>
<term>Second measure</term>
<term>Selective advantage</term>
<term>Several litters</term>
<term>Shearwater</term>
<term>Silver gull</term>
<term>Silver gull chicks</term>
<term>Silver gulls</term>
<term>Similar tfass</term>
<term>Single prey</term>
<term>Skink</term>
<term>Skink control herdsman lake chicken</term>
<term>Skink mouse frog chicken</term>
<term>Skink samples</term>
<term>Standard error</term>
<term>Stimuli carnac island stimuli mouse frog frog chicken</term>
<term>Strainer</term>
<term>Tfas</term>
<term>Tfass</term>
<term>Thamnophis elegans</term>
<term>Thamnophis sirtalis</term>
<term>Tiger</term>
<term>Tiger snakes</term>
<term>Time scores</term>
<term>Variable environments</term>
<term>Various prey items</term>
<term>Various stimuli</term>
<term>Vipera berus</term>
<term>Water dish</term>
<term>West aust</term>
<term>Western australia</term>
<term>Western australia press</term>
<term>Wilcoxon tests</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>écologie</term>
<term>Reptile</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Variations at both the genetic and phenotypic levels play an important role in responses to food and food-related stimuli. Knowledge of such variations is crucial to understanding how populations adapt to changing environments. We investigated the dietary preferences of 2 tiger snake populations and compared the responses of diet-naive animals (laboratory-born neonates), diet-controlled animals (laboratory-reared juveniles), and natural diet–experienced animals (wild-caught adults) to visual and chemical cues from 6 prey types (mouse, skink, silver gull, chicken, shearwater, and frog). The mainland population inhabits a swamp, feeds mostly on frogs, and suffers heavy predation. The second population inhabits a small nearby offshore island with no standing water (no frogs); feeds mostly on skinks, mice, and, as adults, silver gull chicks; and suffers no known predation. Although different prey are eaten in the 2 populations, adult wild-caught snakes from both populations showed a significant preference for 3 types of prey (frog, mouse, and chick), irrespective of their natural diet. Neonates responded to all prey cues more than they did to control stimuli in both populations. However, the island neonates showed significantly higher interest in silver gull chick stimuli (the main prey of the island adult snakes) than did their mainland conspecifics. Laboratory-bred juveniles displayed behavioral plasticity by significantly increasing their response to mice after being fed baby mice for 7 months. We conclude that genetic-based differences in food-related cues are important in tiger snakes but that they are also capable of behavioral plasticity. Island adult and neonate snakes exhibited responses to prey types no longer consumed naturally (frog), suggesting that behavioral characters may have been retained for long periods under relaxed selection. Island neonates showed a strong interest in a novel prey item (silver gull). This result complements previous work describing how island snakes have developed the ability to swallow larger prey than usual, as well as seemingly developing a taste for them.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Poitou-Charentes</li>
<li>Tennessee</li>
</region>
<settlement>
<li>Poitiers</li>
</settlement>
<orgName>
<li>Université de Poitiers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bradshaw, Don" sort="Bradshaw, Don" uniqKey="Bradshaw D" first="Don" last="Bradshaw">Don Bradshaw</name>
<name sortKey="Maumelat, Ste Phanie" sort="Maumelat, Ste Phanie" uniqKey="Maumelat S" first="Ste Phanie" last="Maumelat">Ste Phanie Maumelat</name>
</noCountry>
<country name="France">
<region name="Poitou-Charentes">
<name sortKey="Aubret, Fabien" sort="Aubret, Fabien" uniqKey="Aubret F" first="Fabien" last="Aubret">Fabien Aubret</name>
</region>
<name sortKey="Bonnet, Xavier" sort="Bonnet, Xavier" uniqKey="Bonnet X" first="Xavier" last="Bonnet">Xavier Bonnet</name>
</country>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Burghardt, Gordon M" sort="Burghardt, Gordon M" uniqKey="Burghardt G" first="Gordon M." last="Burghardt">Gordon M. Burghardt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001642 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 001642 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:BD313A2B8B61458172DBAE63E7F94F9495AD4997
   |texte=   Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024