Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source

Identifieur interne : 001497 ( Istex/Corpus ); précédent : 001496; suivant : 001498

CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source

Auteurs : Marcelo C. Matsudo ; Raquel P. Bezerra ; Attilio Converti ; Sunao Sato ; João Carlos M. Carvalho

Source :

RBID : ISTEX:C429BE19B06C7599123888C4A50C28D2F08A1835

English descriptors

Abstract

Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO2 involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO2 released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO2 from alcoholic fermentation, without any treatment, or using pure CO2 from cylinder. The experiments were carried out at 120 μmol photons m−2 s−1 in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d−1). Using CO2 from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L−1) was achieved at D = 0.2 d−1, whereas higher dilution rate (0.6 d−1) was needed to maximize cell productivity (839 mg L−1 d−1). This value was 10% lower than the one obtained with pure CO2, and there was no significant difference in the biomass protein content. With D = 0.8 d−1, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO2 and CO2 from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO2 from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011

Url:
DOI: 10.1002/btpr.581

Links to Exploration step

ISTEX:C429BE19B06C7599123888C4A50C28D2F08A1835

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
<author>
<name sortKey="Matsudo, Marcelo C" sort="Matsudo, Marcelo C" uniqKey="Matsudo M" first="Marcelo C." last="Matsudo">Marcelo C. Matsudo</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezerra, Raquel P" sort="Bezerra, Raquel P" uniqKey="Bezerra R" first="Raquel P." last="Bezerra">Raquel P. Bezerra</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Converti, Attilio" sort="Converti, Attilio" uniqKey="Converti A" first="Attilio" last="Converti">Attilio Converti</name>
<affiliation>
<mods:affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sato, Sunao" sort="Sato, Sunao" uniqKey="Sato S" first="Sunao" last="Sato">Sunao Sato</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Joao Carlos M" sort="Carvalho, Joao Carlos M" uniqKey="Carvalho J" first="João Carlos M." last="Carvalho">João Carlos M. Carvalho</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C429BE19B06C7599123888C4A50C28D2F08A1835</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/btpr.581</idno>
<idno type="url">https://api.istex.fr/document/C429BE19B06C7599123888C4A50C28D2F08A1835/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
<author>
<name sortKey="Matsudo, Marcelo C" sort="Matsudo, Marcelo C" uniqKey="Matsudo M" first="Marcelo C." last="Matsudo">Marcelo C. Matsudo</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezerra, Raquel P" sort="Bezerra, Raquel P" uniqKey="Bezerra R" first="Raquel P." last="Bezerra">Raquel P. Bezerra</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Converti, Attilio" sort="Converti, Attilio" uniqKey="Converti A" first="Attilio" last="Converti">Attilio Converti</name>
<affiliation>
<mods:affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sato, Sunao" sort="Sato, Sunao" uniqKey="Sato S" first="Sunao" last="Sato">Sunao Sato</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Joao Carlos M" sort="Carvalho, Joao Carlos M" uniqKey="Carvalho J" first="João Carlos M." last="Carvalho">João Carlos M. Carvalho</name>
<affiliation>
<mods:affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biotechnology Progress</title>
<title level="j" type="abbrev">Biotechnol Progress</title>
<idno type="ISSN">8756-7938</idno>
<idno type="eISSN">1520-6033</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-05">2011-05</date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="650">650</biblScope>
<biblScope unit="page" to="656">656</biblScope>
</imprint>
<idno type="ISSN">8756-7938</idno>
</series>
<idno type="istex">C429BE19B06C7599123888C4A50C28D2F08A1835</idno>
<idno type="DOI">10.1002/btpr.581</idno>
<idno type="ArticleID">BTPR581</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">8756-7938</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arthrospira (Spirulina) platensis</term>
<term>CO2</term>
<term>alcoholic fermentation</term>
<term>continuous process</term>
<term>tubular photobioreactor</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO2 involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO2 released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO2 from alcoholic fermentation, without any treatment, or using pure CO2 from cylinder. The experiments were carried out at 120 μmol photons m−2 s−1 in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d−1). Using CO2 from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L−1) was achieved at D = 0.2 d−1, whereas higher dilution rate (0.6 d−1) was needed to maximize cell productivity (839 mg L−1 d−1). This value was 10% lower than the one obtained with pure CO2, and there was no significant difference in the biomass protein content. With D = 0.8 d−1, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO2 and CO2 from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO2 from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Marcelo C. Matsudo</name>
<affiliations>
<json:string>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</json:string>
</affiliations>
</json:item>
<json:item>
<name>Raquel P. Bezerra</name>
<affiliations>
<json:string>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</json:string>
<json:string>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Attilio Converti</name>
<affiliations>
<json:string>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sunao Sato</name>
<affiliations>
<json:string>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</json:string>
</affiliations>
</json:item>
<json:item>
<name>João Carlos M. Carvalho</name>
<affiliations>
<json:string>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Arthrospira (Spirulina) platensis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>continuous process</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CO2</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>alcoholic fermentation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tubular photobioreactor</value>
</json:item>
</subject>
<articleId>
<json:string>BTPR581</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO2 involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO2 released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO2 from alcoholic fermentation, without any treatment, or using pure CO2 from cylinder. The experiments were carried out at 120 μmol photons m−2 s−1 in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d−1). Using CO2 from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L−1) was achieved at D = 0.2 d−1, whereas higher dilution rate (0.6 d−1) was needed to maximize cell productivity (839 mg L−1 d−1). This value was 10% lower than the one obtained with pure CO2, and there was no significant difference in the biomass protein content. With D = 0.8 d−1, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO2 and CO2 from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO2 from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</abstract>
<qualityIndicators>
<score>7.454</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>607 x 801 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1581</abstractCharCount>
<pdfWordCount>4454</pdfWordCount>
<pdfCharCount>27612</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>253</abstractWordCount>
</qualityIndicators>
<title>CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>27</volume>
<publisherId>
<json:string>BTPR</json:string>
</publisherId>
<pages>
<total>7</total>
<last>656</last>
<first>650</first>
</pages>
<issn>
<json:string>8756-7938</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>Biocatalysts and Bioreactor Design</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1520-6033</json:string>
</eissn>
<title>Biotechnology Progress</title>
<doi>
<json:string>10.1021/(ISSN)1520-6033</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/btpr.581</json:string>
</doi>
<id>C429BE19B06C7599123888C4A50C28D2F08A1835</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C429BE19B06C7599123888C4A50C28D2F08A1835/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C429BE19B06C7599123888C4A50C28D2F08A1835/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C429BE19B06C7599123888C4A50C28D2F08A1835/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) - No. 06/56976‐2; No. 06/54960‐1;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
<author>
<persName>
<forename type="first">Marcelo C.</forename>
<surname>Matsudo</surname>
</persName>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
</author>
<author>
<persName>
<forename type="first">Raquel P.</forename>
<surname>Bezerra</surname>
</persName>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
<affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">Attilio</forename>
<surname>Converti</surname>
</persName>
<affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">Sunao</forename>
<surname>Sato</surname>
</persName>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
</author>
<author>
<persName>
<forename type="first">João Carlos M.</forename>
<surname>Carvalho</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil===</p>
</note>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Biotechnology Progress</title>
<title level="j" type="abbrev">Biotechnol Progress</title>
<idno type="pISSN">8756-7938</idno>
<idno type="eISSN">1520-6033</idno>
<idno type="DOI">10.1021/(ISSN)1520-6033</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-05"></date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="650">650</biblScope>
<biblScope unit="page" to="656">656</biblScope>
</imprint>
</monogr>
<idno type="istex">C429BE19B06C7599123888C4A50C28D2F08A1835</idno>
<idno type="DOI">10.1002/btpr.581</idno>
<idno type="ArticleID">BTPR581</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO2 involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO2 released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO2 from alcoholic fermentation, without any treatment, or using pure CO2 from cylinder. The experiments were carried out at 120 μmol photons m−2 s−1 in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d−1). Using CO2 from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L−1) was achieved at D = 0.2 d−1, whereas higher dilution rate (0.6 d−1) was needed to maximize cell productivity (839 mg L−1 d−1). This value was 10% lower than the one obtained with pure CO2, and there was no significant difference in the biomass protein content. With D = 0.8 d−1, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO2 and CO2 from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO2 from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Arthrospira (Spirulina) platensis</term>
</item>
<item>
<term>continuous process</term>
</item>
<item>
<term>CO2</term>
</item>
<item>
<term>alcoholic fermentation</term>
</item>
<item>
<term>tubular photobioreactor</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Biocatalysts and Bioreactor Design</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-06-01">Received</change>
<change when="2011-05">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C429BE19B06C7599123888C4A50C28D2F08A1835/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1021/(ISSN)1520-6033</doi>
<issn type="print">8756-7938</issn>
<issn type="electronic">1520-6033</issn>
<idGroup>
<id type="product" value="BTPR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="BIOTECHNOLOGY PROGRESS">Biotechnology Progress</title>
<title type="short">Biotechnol Progress</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/btpr.v27.3</doi>
<numberingGroup>
<numbering type="journalVolume" number="27">27</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2011-05">May/June 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="60" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/btpr.581</doi>
<idGroup>
<id type="unit" value="BTPR581"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Biocatalysts and Bioreactor Design</title>
<title type="tocHeading1">Biocatalysts and Bioreactor Design</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2011 American Institute of Chemical Engineers (AIChE)</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-06-01"></event>
<event type="manuscriptRevised" date="2011-01-27"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.5 mode:FullText" date="2011-06-06"></event>
<event type="publishedOnlineAccepted" date="2011-02-24"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-03-29"></event>
<event type="publishedOnlineFinalForm" date="2011-06-06"></event>
<event type="firstOnline" date="2011-03-29"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">650</numbering>
<numbering type="pageLast">656</numbering>
</numberingGroup>
<correspondenceTo>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:BTPR.BTPR581.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="36"></count>
<count type="wordTotal" number="5624"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">CO
<sub>2</sub>
from alcoholic fermentation for continuous cultivation of
<i>Arthrospira</i>
(
<i>Spirulina</i>
)
<i>platensis</i>
in tubular photobioreactor using urea as nitrogen source</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Marcelo C.</givenNames>
<familyName>Matsudo</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Raquel P.</givenNames>
<familyName>Bezerra</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Attilio</givenNames>
<familyName>Converti</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Sunao</givenNames>
<familyName>Sato</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>João Carlos M.</givenNames>
<familyName>Carvalho</familyName>
</personName>
<contactDetails>
<email>jcmdcarv@usp.br</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="BR" type="organization">
<unparsedAffiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="IT" type="organization">
<unparsedAffiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Arthrospira (Spirulina) platensis</keyword>
<keyword xml:id="kwd2">continuous process</keyword>
<keyword xml:id="kwd3">CO
<sub>2</sub>
</keyword>
<keyword xml:id="kwd4">alcoholic fermentation</keyword>
<keyword xml:id="kwd5">tubular photobioreactor</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp)</fundingAgency>
<fundingNumber>06/56976‐2</fundingNumber>
<fundingNumber>06/54960‐1</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO
<sub>2</sub>
involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO
<sub>2</sub>
released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO
<sub>2</sub>
from alcoholic fermentation, without any treatment, or using pure CO
<sub>2</sub>
from cylinder. The experiments were carried out at 120 μmol photons m
<sup>−2</sup>
s
<sup>−1</sup>
in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d
<sup>−1</sup>
). Using CO
<sub>2</sub>
from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L
<sup>−1</sup>
) was achieved at D = 0.2 d
<sup>−1</sup>
, whereas higher dilution rate (0.6 d
<sup>−1</sup>
) was needed to maximize cell productivity (839 mg L
<sup>−1</sup>
d
<sup>−1</sup>
). This value was 10% lower than the one obtained with pure CO
<sub>2</sub>
, and there was no significant difference in the biomass protein content. With D = 0.8 d
<sup>−1</sup>
, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO
<sub>2</sub>
and CO
<sub>2</sub>
from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO
<sub>2</sub>
from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>CO</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcelo C.</namePart>
<namePart type="family">Matsudo</namePart>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel P.</namePart>
<namePart type="family">Bezerra</namePart>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
<affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Attilio</namePart>
<namePart type="family">Converti</namePart>
<affiliation>Dept. of Chemical and Process Engineering “G.B. Bonino,” University of Genoa, via Opera Pia 15, Genoa 16145, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunao</namePart>
<namePart type="family">Sato</namePart>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João Carlos M.</namePart>
<namePart type="family">Carvalho</namePart>
<affiliation>Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil</affiliation>
<description>Correspondence: Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bl. 16, São Paulo‐SP 05508‐900, Brazil===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-05</dateIssued>
<dateCaptured encoding="w3cdtf">2010-06-01</dateCaptured>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">2</extent>
<extent unit="references">36</extent>
<extent unit="words">5624</extent>
</physicalDescription>
<abstract lang="en">Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO2 involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO2 released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO2 from alcoholic fermentation, without any treatment, or using pure CO2 from cylinder. The experiments were carried out at 120 μmol photons m−2 s−1 in tubular photobioreactor at different dilution rates (0.2 ≤ D ≤ 0.8 d−1). Using CO2 from alcoholic fermentation, maximum steady‐state cell concentration (2661 ± 71 mg L−1) was achieved at D = 0.2 d−1, whereas higher dilution rate (0.6 d−1) was needed to maximize cell productivity (839 mg L−1 d−1). This value was 10% lower than the one obtained with pure CO2, and there was no significant difference in the biomass protein content. With D = 0.8 d−1, it was possible to obtain 56% ± 1.5% and 50% ± 1.2% of protein in the dry biomass, using pure CO2 and CO2 from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO2 from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</abstract>
<note type="funding">Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) - No. 06/56976‐2; No. 06/54960‐1; </note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Arthrospira (Spirulina) platensis</topic>
<topic>continuous process</topic>
<topic>CO2</topic>
<topic>alcoholic fermentation</topic>
<topic>tubular photobioreactor</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biotechnology Progress</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biotechnol Progress</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Biocatalysts and Bioreactor Design</topic>
</subject>
<identifier type="ISSN">8756-7938</identifier>
<identifier type="eISSN">1520-6033</identifier>
<identifier type="DOI">10.1021/(ISSN)1520-6033</identifier>
<identifier type="PublisherID">BTPR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>650</start>
<end>656</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C429BE19B06C7599123888C4A50C28D2F08A1835</identifier>
<identifier type="DOI">10.1002/btpr.581</identifier>
<identifier type="ArticleID">BTPR581</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 American Institute of Chemical Engineers (AIChE)</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001497 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001497 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C429BE19B06C7599123888C4A50C28D2F08A1835
   |texte=   CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024