Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural determinants of water permeation through the sodium-galactose transporter vSGLT.

Identifieur interne : 003545 ( PubMed/Curation ); précédent : 003544; suivant : 003546

Structural determinants of water permeation through the sodium-galactose transporter vSGLT.

Auteurs : Joshua L. Adelman [États-Unis] ; Ying Sheng [États-Unis] ; Seungho Choe [Corée du Sud] ; Jeff Abramson [États-Unis] ; Ernest M. Wright [États-Unis] ; John M. Rosenberg [États-Unis] ; Michael Grabe [États-Unis]

Source :

RBID : pubmed:24655503

Descripteurs français

English descriptors

Abstract

Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.

DOI: 10.1016/j.bpj.2014.01.006
PubMed: 24655503

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24655503

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural determinants of water permeation through the sodium-galactose transporter vSGLT.</title>
<author>
<name sortKey="Adelman, Joshua L" sort="Adelman, Joshua L" uniqKey="Adelman J" first="Joshua L" last="Adelman">Joshua L. Adelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Ying" sort="Sheng, Ying" uniqKey="Sheng Y" first="Ying" last="Sheng">Ying Sheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Choe, Seungho" sort="Choe, Seungho" uniqKey="Choe S" first="Seungho" last="Choe">Seungho Choe</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Abramson, Jeff" sort="Abramson, Jeff" uniqKey="Abramson J" first="Jeff" last="Abramson">Jeff Abramson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of California, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wright, Ernest M" sort="Wright, Ernest M" uniqKey="Wright E" first="Ernest M" last="Wright">Ernest M. Wright</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of California, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rosenberg, John M" sort="Rosenberg, John M" uniqKey="Rosenberg J" first="John M" last="Rosenberg">John M. Rosenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: jmr@pitt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grabe, Michael" sort="Grabe, Michael" uniqKey="Grabe M" first="Michael" last="Grabe">Michael Grabe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California. Electronic address: michael.grabe@ucsf.edu.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24655503</idno>
<idno type="pmid">24655503</idno>
<idno type="doi">10.1016/j.bpj.2014.01.006</idno>
<idno type="wicri:Area/PubMed/Corpus">003568</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003568</idno>
<idno type="wicri:Area/PubMed/Curation">003545</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural determinants of water permeation through the sodium-galactose transporter vSGLT.</title>
<author>
<name sortKey="Adelman, Joshua L" sort="Adelman, Joshua L" uniqKey="Adelman J" first="Joshua L" last="Adelman">Joshua L. Adelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Ying" sort="Sheng, Ying" uniqKey="Sheng Y" first="Ying" last="Sheng">Ying Sheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Choe, Seungho" sort="Choe, Seungho" uniqKey="Choe S" first="Seungho" last="Choe">Seungho Choe</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Abramson, Jeff" sort="Abramson, Jeff" uniqKey="Abramson J" first="Jeff" last="Abramson">Jeff Abramson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of California, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wright, Ernest M" sort="Wright, Ernest M" uniqKey="Wright E" first="Ernest M" last="Wright">Ernest M. Wright</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of California, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rosenberg, John M" sort="Rosenberg, John M" uniqKey="Rosenberg J" first="John M" last="Rosenberg">John M. Rosenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: jmr@pitt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grabe, Michael" sort="Grabe, Michael" uniqKey="Grabe M" first="Michael" last="Grabe">Michael Grabe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California. Electronic address: michael.grabe@ucsf.edu.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="eISSN">1542-0086</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Galactose (metabolism)</term>
<term>Humans</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Sodium-Glucose Transport Proteins (chemistry)</term>
<term>Sodium-Glucose Transport Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Galactose (métabolisme)</term>
<term>Humains</term>
<term>Protéines de transport glucose-sodium ()</term>
<term>Protéines de transport glucose-sodium (métabolisme)</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sodium-Glucose Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Galactose</term>
<term>Sodium-Glucose Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Galactose</term>
<term>Protéines de transport glucose-sodium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Humans</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Protéines de transport glucose-sodium</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24655503</PMID>
<DateCreated>
<Year>2014</Year>
<Month>03</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1542-0086</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural determinants of water permeation through the sodium-galactose transporter vSGLT.</ArticleTitle>
<Pagination>
<MedlinePgn>1280-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bpj.2014.01.006</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0006-3495(14)00067-8</ELocationID>
<Abstract>
<AbstractText>Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.</AbstractText>
<CopyrightInformation>Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adelman</LastName>
<ForeName>Joshua L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheng</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choe</LastName>
<ForeName>Seungho</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abramson</LastName>
<ForeName>Jeff</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of California, Los Angeles, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>Ernest M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of California, Los Angeles, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenberg</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: jmr@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grabe</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California. Electronic address: michael.grabe@ucsf.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK019567</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK19567</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-DK061296</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM089740</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM078844</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41GM103712-S1</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM078844</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM089740-01A1</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 DK061296</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051247">Sodium-Glucose Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X2RN3Q8DNE</RegistryNumber>
<NameOfSubstance UI="D005690">Galactose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Biophys J. 2014 Mar 18;106(6):1229-30</RefSource>
<PMID Version="1">24655496</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W555-62</RefSource>
<PMID Version="1">20478824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 Jul 1;542(Pt 1):53-60</RefSource>
<PMID Version="1">12096049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2012 May 1;302(9):C1293-305</RefSource>
<PMID Version="1">22159082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2004;129(4):1031-44</RefSource>
<PMID Version="1">15561418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2005 Jun;88(6):3745-61</RefSource>
<PMID Version="1">15764651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Membr Biol. 2010 Apr;234(2):57-73</RefSource>
<PMID Version="1">20091162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2011 Nov 16;101(10):2399-407</RefSource>
<PMID Version="1">22098738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Aug 18;275(33):25711-6</RefSource>
<PMID Version="1">10835424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 May 7;110(19):7696-701</RefSource>
<PMID Version="1">23610412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Membr Biol. 2002 May 1;187(1):65-70</RefSource>
<PMID Version="1">12029378</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Graph. 1996 Dec;14(6):354-60, 376</RefSource>
<PMID Version="1">9195488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2013 Feb 12;9(2):1240-6</RefSource>
<PMID Version="1">26588767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</RefSource>
<PMID Version="1">20057044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2008 Nov 30;29(15):2543-64</RefSource>
<PMID Version="1">18470966</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2004 Mar 30;43(12):3620-7</RefSource>
<PMID Version="1">15035632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1996 Nov;271(5 Pt 1):C1774-9</RefSource>
<PMID Version="1">8944663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 Oct 6;99(7):L56-8</RefSource>
<PMID Version="1">20923633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3796-801</RefSource>
<PMID Version="1">11274397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2006 Apr 1;90(7):2270-84</RefSource>
<PMID Version="1">16399837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2005 Oct 24;579(25):5549-52</RefSource>
<PMID Version="1">16225876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13367-70</RefSource>
<PMID Version="1">8917597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2010 Jun 17;114(23):7830-43</RefSource>
<PMID Version="1">20496934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2011 Apr;91(2):733-94</RefSource>
<PMID Version="1">21527736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1999 Jul 1;518(Pt 1):195-202</RefSource>
<PMID Version="1">10373701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2009 Feb;96(3):925-38</RefSource>
<PMID Version="1">19186131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bull World Health Organ. 2000;78(10):1246-55</RefSource>
<PMID Version="1">11100619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2006 May 15;90(10):3546-54</RefSource>
<PMID Version="1">16500986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Dec 16;468(7326):988-91</RefSource>
<PMID Version="1">21131949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Aug 8;321(5890):810-4</RefSource>
<PMID Version="1">18599740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Apr 19;296(5567):525-30</RefSource>
<PMID Version="1">11964478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2005 Dec;26(16):1781-802</RefSource>
<PMID Version="1">16222654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2007 Apr 1;92(7):2403-11</RefSource>
<PMID Version="1">17208964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gen Physiol. 2006 Feb;127(2):145-58</RefSource>
<PMID Version="1">16446504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2012;13 Suppl 4:S1</RefSource>
<PMID Version="1">22536955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Membr Biol. 1995 Nov;148(1):65-78</RefSource>
<PMID Version="1">8558603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2004 Jan;86(1 Pt 1):125-33</RefSource>
<PMID Version="1">14695256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2011 Oct 19;101(8):1887-95</RefSource>
<PMID Version="1">22004742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</RefSource>
<PMID Version="1">8744570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2005 Feb 1;122(5):54101</RefSource>
<PMID Version="1">15740304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 1998 Apr 30;102(18):3586-616</RefSource>
<PMID Version="1">24889800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gen Physiol. 2006 Dec;128(6):701-20</RefSource>
<PMID Version="1">17130520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2004 Nov 26;93(22):224501</RefSource>
<PMID Version="1">15601094</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1988 Apr 8;240(4849):228</RefSource>
<PMID Version="1">17800923</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2006 Mar 1;22(5):623-5</RefSource>
<PMID Version="1">16397007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19814-9</RefSource>
<PMID Version="1">21041674</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2009 Aug;19(4):425-32</RefSource>
<PMID Version="1">19631523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2004 Aug;25(11):1400-15</RefSource>
<PMID Version="1">15185334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Aug 25;275(34):25959-64</RefSource>
<PMID Version="1">10852908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiology (Bethesda). 2009 Dec;24:377-86</RefSource>
<PMID Version="1">19996368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(9):e880</RefSource>
<PMID Version="1">17849009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2008 May 15;94(10):3912-23</RefSource>
<PMID Version="1">18234816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1993 Dec 5;234(3):779-815</RefSource>
<PMID Version="1">8254673</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005690" MajorTopicYN="N">Galactose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="Y">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051247" MajorTopicYN="N">Sodium-Glucose Transport Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3984995</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24655503</ArticleId>
<ArticleId IdType="pii">S0006-3495(14)00067-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.bpj.2014.01.006</ArticleId>
<ArticleId IdType="pmc">PMC3984995</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003545 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003545 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24655503
   |texte=   Structural determinants of water permeation through the sodium-galactose transporter vSGLT.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24655503" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021