Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.

Identifieur interne : 003362 ( PubMed/Curation ); précédent : 003361; suivant : 003363

Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.

Auteurs : Avisek Das [États-Unis] ; Mert Gur [États-Unis] ; Mary Hongying Cheng [États-Unis] ; Sunhwan Jo [États-Unis] ; Ivet Bahar [États-Unis] ; Benoît Roux [États-Unis]

Source :

RBID : pubmed:24699246

Descripteurs français

English descriptors

Abstract

Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.

DOI: 10.1371/journal.pcbi.1003521
PubMed: 24699246

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24699246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.</title>
<author>
<name sortKey="Das, Avisek" sort="Das, Avisek" uniqKey="Das A" first="Avisek" last="Das">Avisek Das</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gur, Mert" sort="Gur, Mert" uniqKey="Gur M" first="Mert" last="Gur">Mert Gur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Mary Hongying" sort="Cheng, Mary Hongying" uniqKey="Cheng M" first="Mary Hongying" last="Cheng">Mary Hongying Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jo, Sunhwan" sort="Jo, Sunhwan" uniqKey="Jo S" first="Sunhwan" last="Jo">Sunhwan Jo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bahar, Ivet" sort="Bahar, Ivet" uniqKey="Bahar I" first="Ivet" last="Bahar">Ivet Bahar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roux, Benoit" sort="Roux, Benoit" uniqKey="Roux B" first="Benoît" last="Roux">Benoît Roux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24699246</idno>
<idno type="pmid">24699246</idno>
<idno type="doi">10.1371/journal.pcbi.1003521</idno>
<idno type="wicri:Area/PubMed/Corpus">003385</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003385</idno>
<idno type="wicri:Area/PubMed/Curation">003362</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003362</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.</title>
<author>
<name sortKey="Das, Avisek" sort="Das, Avisek" uniqKey="Das A" first="Avisek" last="Das">Avisek Das</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gur, Mert" sort="Gur, Mert" uniqKey="Gur M" first="Mert" last="Gur">Mert Gur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Mary Hongying" sort="Cheng, Mary Hongying" uniqKey="Cheng M" first="Mary Hongying" last="Cheng">Mary Hongying Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jo, Sunhwan" sort="Jo, Sunhwan" uniqKey="Jo S" first="Sunhwan" last="Jo">Sunhwan Jo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bahar, Ivet" sort="Bahar, Ivet" uniqKey="Bahar I" first="Ivet" last="Bahar">Ivet Bahar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roux, Benoit" sort="Roux, Benoit" uniqKey="Roux B" first="Benoît" last="Roux">Benoît Roux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenylate Kinase (chemistry)</term>
<term>Amino Acid Transport System X-AG (chemistry)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Leucine (chemistry)</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Sarcoplasmic Reticulum (enzymology)</term>
<term>Sarcoplasmic Reticulum Calcium-Transporting ATPases (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenylate kinase ()</term>
<term>Conformation des protéines</term>
<term>Leucine ()</term>
<term>Modèles moléculaires</term>
<term>Protéines de transport ()</term>
<term>Réticulum sarcoplasmique (enzymologie)</term>
<term>Sarcoplasmic Reticulum Calcium-Transporting ATPases ()</term>
<term>Système X-AG de transport d'acides aminés ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adenylate Kinase</term>
<term>Amino Acid Transport System X-AG</term>
<term>Carrier Proteins</term>
<term>Leucine</term>
<term>Sarcoplasmic Reticulum Calcium-Transporting ATPases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Réticulum sarcoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Sarcoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Molecular</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adenylate kinase</term>
<term>Conformation des protéines</term>
<term>Leucine</term>
<term>Modèles moléculaires</term>
<term>Protéines de transport</term>
<term>Sarcoplasmic Reticulum Calcium-Transporting ATPases</term>
<term>Système X-AG de transport d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24699246</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003521</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003521</ELocationID>
<Abstract>
<AbstractText>Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Avisek</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gur</LastName>
<ForeName>Mert</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Mary Hongying</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jo</LastName>
<ForeName>Sunhwan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahar</LastName>
<ForeName>Ivet</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roux</LastName>
<ForeName>Benoît</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM086238</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM086238</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM087519</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-GM099738</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM103712</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM099738</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-GM087519</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027322">Amino Acid Transport System X-AG</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.4.3</RegistryNumber>
<NameOfSubstance UI="D000263">Adenylate Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.8</RegistryNumber>
<NameOfSubstance UI="D053498">Sarcoplasmic Reticulum Calcium-Transporting ATPases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18496-501</RefSource>
<PMID Version="1">18000050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2012 Mar 21;102(6):1331-40</RefSource>
<PMID Version="1">22455916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2008 Mar;4(3):e1000047</RefSource>
<PMID Version="1">18369437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Oct 17;283(42):28680-90</RefSource>
<PMID Version="1">18678877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6</RefSource>
<PMID Version="1">12271136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2011 Nov 16;101(10):2399-407</RefSource>
<PMID Version="1">22098738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2012;8(6):e1002555</RefSource>
<PMID Version="1">22685395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Jan 26;481(7382):469-74</RefSource>
<PMID Version="1">22230955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1996 Jan;70(1):97-110</RefSource>
<PMID Version="1">8770190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biophys. 2010;39:23-42</RefSource>
<PMID Version="1">20192781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2012 Apr 4;20(4):618-27</RefSource>
<PMID Version="1">22483109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 1999 Jan 1;34(1):96-112</RefSource>
<PMID Version="1">10336386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2011 Feb 28;134(8):085103</RefSource>
<PMID Version="1">21361558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2009 Feb 15;74(3):760-76</RefSource>
<PMID Version="1">18712827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2005 Sep 30;352(4):807-22</RefSource>
<PMID Version="1">16139299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W310-6</RefSource>
<PMID Version="1">22669906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2008 Mar 20;112(11):3432-40</RefSource>
<PMID Version="1">18290641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2009 Nov 4;97(9):2456-63</RefSource>
<PMID Version="1">19883588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Jun 8;405(6787):647-55</RefSource>
<PMID Version="1">10864315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Theory Comput. 2012 Nov 13;8(11):4707-18</RefSource>
<PMID Version="1">26605625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2004 Jun 22;120(24):11919-29</RefSource>
<PMID Version="1">15268227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2010 Oct 28;114(42):13342-8</RefSource>
<PMID Version="1">20923227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1996 Aug 26;77(9):1905-1908</RefSource>
<PMID Version="1">10063201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Oct 14;431(7010):811-8</RefSource>
<PMID Version="1">15483603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2005 Apr;15(2):151-6</RefSource>
<PMID Version="1">15837172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2012 Sep 14;137(10):104101</RefSource>
<PMID Version="1">22979844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W477-82</RefSource>
<PMID Version="1">17545201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2010 Feb 7;132(5):054107</RefSource>
<PMID Version="1">20136305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2007 Oct 1;69(1):43-57</RefSource>
<PMID Version="1">17596847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2001 Jan;80(1):505-15</RefSource>
<PMID Version="1">11159421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2011 Jan 30;32(2):196-209</RefSource>
<PMID Version="1">21132840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2003 Oct;85(4):2186-97</RefSource>
<PMID Version="1">14507684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2012 Aug 9;116(31):9371-5</RefSource>
<PMID Version="1">22793795</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2011 Oct 14;135(14):145102</RefSource>
<PMID Version="1">22010733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2013 Aug 6;105(3):630-9</RefSource>
<PMID Version="1">23931311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Graph Model. 2002 Oct;21(2):151-60</RefSource>
<PMID Version="1">12398345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Graph Model. 2005 Sep;24(1):46-58</RefSource>
<PMID Version="1">15990344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12570-5</RefSource>
<PMID Version="1">14566052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jun;1793(6):941-6</RefSource>
<PMID Version="1">19010358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2005 Oct;15(5):586-92</RefSource>
<PMID Version="1">16143512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2013 Mar 22;288(12):8231-7</RefSource>
<PMID Version="1">23386619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2013 Jun;81(6):1017-30</RefSource>
<PMID Version="1">23348915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15141-6</RefSource>
<PMID Version="1">21876140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2006 Jul 14;125(2):24106</RefSource>
<PMID Version="1">16848576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2007 Apr 28;126(16):164103</RefSource>
<PMID Version="1">17477585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2008 Dec 15;95(12):5862-73</RefSource>
<PMID Version="1">18676657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2013 Sep 28;139(12):121912</RefSource>
<PMID Version="1">24089724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biopolymers. 1981 May;20(5):1013-31</RefSource>
<PMID Version="1">7225529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2008 Apr 8;47(14):4246-56</RefSource>
<PMID Version="1">18338856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2012 Mar;19(3):355-7</RefSource>
<PMID Version="1">22343718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(10):e26936</RefSource>
<PMID Version="1">22046418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 2001 Jan;14(1):1-6</RefSource>
<PMID Version="1">11287673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Jun 11;304(5677):1672-5</RefSource>
<PMID Version="1">15192230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2007 Dec 1;93(11):3860-71</RefSource>
<PMID Version="1">17704151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2011 Jul;7(7):e1002103</RefSource>
<PMID Version="1">21779157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biopolymers. 1981 May;20(5):991-1011</RefSource>
<PMID Version="1">7225531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Sep 8;437(7056):215-23</RefSource>
<PMID Version="1">16041361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2002 Sep;83(3):1620-30</RefSource>
<PMID Version="1">12202386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phys Chem. 2002;53:291-318</RefSource>
<PMID Version="1">11972010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Dec 6;450(7171):838-44</RefSource>
<PMID Version="1">18026086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fold Des. 1997;2(3):173-81</RefSource>
<PMID Version="1">9218955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2007 Nov;15(11):1482-92</RefSource>
<PMID Version="1">17997973</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jan 25;283(4):2042-8</RefSource>
<PMID Version="1">17998210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2010 Aug 15;78(11):2469-81</RefSource>
<PMID Version="1">20602461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2012 Apr 18;102(8):1979-87</RefSource>
<PMID Version="1">22768955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2005 Dec;13(12):1755-63</RefSource>
<PMID Version="1">16338404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 2008 Aug 1;476(1):3-11</RefSource>
<PMID Version="1">18455499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 Nov 17;99(10):3420-9</RefSource>
<PMID Version="1">21081091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2010 Jul 16;400(3):618-31</RefSource>
<PMID Version="1">20471396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Dec 17;462(7275):880-5</RefSource>
<PMID Version="1">19924125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2893-2906</RefSource>
<PMID Version="1">9963736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2007 Mar 9;366(5):1661-71</RefSource>
<PMID Version="1">17217965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2010 Jul 7;133(1):014110</RefSource>
<PMID Version="1">20614962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2009 Apr;5(4):e1000360</RefSource>
<PMID Version="1">19381265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1992 Mar 5;224(1):159-77</RefSource>
<PMID Version="1">1548697</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2013 Oct 1;105(7):1643-52</RefSource>
<PMID Version="1">24094405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Rev. 2010 Mar 10;110(3):1463-97</RefSource>
<PMID Version="1">19785456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2005 Jul;89(1):43-55</RefSource>
<PMID Version="1">15833998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gen Physiol. 2012 Dec;140(6):635-52</RefSource>
<PMID Version="1">23183699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2009 Aug 19;97(4):L8-L10</RefSource>
<PMID Version="1">19686639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2009 Sep 25;392(3):823-36</RefSource>
<PMID Version="1">19576227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2009 Nov 20;394(1):160-76</RefSource>
<PMID Version="1">19751742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 1996 Feb 15;4(2):147-56</RefSource>
<PMID Version="1">8805521</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000263" MajorTopicYN="N">Adenylate Kinase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027322" MajorTopicYN="N">Amino Acid Transport System X-AG</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012519" MajorTopicYN="N">Sarcoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053498" MajorTopicYN="N">Sarcoplasmic Reticulum Calcium-Transporting ATPases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3974643</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24699246</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003521</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-01573</ArticleId>
<ArticleId IdType="pmc">PMC3974643</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003362 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003362 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24699246
   |texte=   Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24699246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021