Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biologic scaffold for CNS repair.

Identifieur interne : 002E82 ( PubMed/Curation ); précédent : 002E81; suivant : 002E83

Biologic scaffold for CNS repair.

Auteurs : Fanwei Meng [États-Unis] ; Michel Modo ; Stephen F. Badylak

Source :

RBID : pubmed:24935046

Descripteurs français

English descriptors

Abstract

Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.

DOI: 10.2217/rme.14.9
PubMed: 24935046

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24935046

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biologic scaffold for CNS repair.</title>
<author>
<name sortKey="Meng, Fanwei" sort="Meng, Fanwei" uniqKey="Meng F" first="Fanwei" last="Meng">Fanwei Meng</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Modo, Michel" sort="Modo, Michel" uniqKey="Modo M" first="Michel" last="Modo">Michel Modo</name>
</author>
<author>
<name sortKey="Badylak, Stephen F" sort="Badylak, Stephen F" uniqKey="Badylak S" first="Stephen F" last="Badylak">Stephen F. Badylak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24935046</idno>
<idno type="pmid">24935046</idno>
<idno type="doi">10.2217/rme.14.9</idno>
<idno type="wicri:Area/PubMed/Corpus">002F01</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002F01</idno>
<idno type="wicri:Area/PubMed/Curation">002E82</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002E82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biologic scaffold for CNS repair.</title>
<author>
<name sortKey="Meng, Fanwei" sort="Meng, Fanwei" uniqKey="Meng F" first="Fanwei" last="Meng">Fanwei Meng</name>
<affiliation wicri:level="1">
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Modo, Michel" sort="Modo, Michel" uniqKey="Modo M" first="Michel" last="Modo">Michel Modo</name>
</author>
<author>
<name sortKey="Badylak, Stephen F" sort="Badylak, Stephen F" uniqKey="Badylak S" first="Stephen F" last="Badylak">Stephen F. Badylak</name>
</author>
</analytic>
<series>
<title level="j">Regenerative medicine</title>
<idno type="eISSN">1746-076X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Central Nervous System (injuries)</term>
<term>Dura Mater (metabolism)</term>
<term>Dura Mater (pathology)</term>
<term>Extracellular Matrix (chemistry)</term>
<term>Humans</term>
<term>Nerve Regeneration (physiology)</term>
<term>Regenerative Medicine (methods)</term>
<term>Regenerative Medicine (trends)</term>
<term>Tissue Scaffolds (chemistry)</term>
<term>Tissue Scaffolds (trends)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dure-mère (anatomopathologie)</term>
<term>Dure-mère (métabolisme)</term>
<term>Humains</term>
<term>Matrice extracellulaire ()</term>
<term>Médecine régénérative ()</term>
<term>Médecine régénérative (tendances)</term>
<term>Régénération nerveuse (physiologie)</term>
<term>Structures d'échafaudage tissulaires ()</term>
<term>Structures d'échafaudage tissulaires (tendances)</term>
<term>Système nerveux central (traumatismes)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Dure-mère</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Extracellular Matrix</term>
<term>Tissue Scaffolds</term>
</keywords>
<keywords scheme="MESH" qualifier="injuries" xml:lang="en">
<term>Central Nervous System</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dura Mater</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Regenerative Medicine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dure-mère</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Dura Mater</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régénération nerveuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Nerve Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Médecine régénérative</term>
<term>Structures d'échafaudage tissulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="traumatismes" xml:lang="fr">
<term>Système nerveux central</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Regenerative Medicine</term>
<term>Tissue Scaffolds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Matrice extracellulaire</term>
<term>Médecine régénérative</term>
<term>Structures d'échafaudage tissulaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24935046</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>06</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1746-076X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Regenerative medicine</Title>
<ISOAbbreviation>Regen Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Biologic scaffold for CNS repair.</ArticleTitle>
<Pagination>
<MedlinePgn>367-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2217/rme.14.9</ELocationID>
<Abstract>
<AbstractText>Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Fanwei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Modo</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Badylak</LastName>
<ForeName>Stephen F</ForeName>
<Initials>SF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Regen Med</MedlineTA>
<NlmUniqueID>101278116</NlmUniqueID>
<ISSNLinking>1746-0751</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002490" MajorTopicYN="N">Central Nervous System</DescriptorName>
<QualifierName UI="Q000293" MajorTopicYN="Y">injuries</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004388" MajorTopicYN="N">Dura Mater</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005109" MajorTopicYN="N">Extracellular Matrix</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009416" MajorTopicYN="N">Nerve Regeneration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044968" MajorTopicYN="N">Regenerative Medicine</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="Y">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054457" MajorTopicYN="N">Tissue Scaffolds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CNS</Keyword>
<Keyword MajorTopicYN="N">ECM</Keyword>
<Keyword MajorTopicYN="N">biologic scaffold</Keyword>
<Keyword MajorTopicYN="N">constructive remodeling</Keyword>
<Keyword MajorTopicYN="N">decellularization</Keyword>
<Keyword MajorTopicYN="N">regeneration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24935046</ArticleId>
<ArticleId IdType="doi">10.2217/rme.14.9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002E82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24935046
   |texte=   Biologic scaffold for CNS repair.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24935046" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021