Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Effective Field Theory approach towards membrane-mediated interactions between particles.

Identifieur interne : 002976 ( PubMed/Curation ); précédent : 002975; suivant : 002977

The Effective Field Theory approach towards membrane-mediated interactions between particles.

Auteurs : Cem Yolcu [États-Unis] ; Robert C. Haussman [États-Unis] ; Markus Deserno [États-Unis]

Source :

RBID : pubmed:24685271

Descripteurs français

English descriptors

Abstract

Fluid lipid membranes can mediate forces between particles bound to them: A local deformation of the surface geometry created by some object spreads to distant regions, where other objects can respond to it. The physical characteristics of these geometric interactions, and how they are affected by thermal fluctuations, are well described by the simple continuum curvature-elastic Hamiltonian proposed 40 years ago by Wolfgang Helfrich. Unfortunately, while the underlying principles are conceptually straightforward, the corresponding calculations are not-largely because one must enforce boundary conditions for finite-sized objects. This challenge has inspired several heuristic approaches for expressing the problem in a point particle language. While streamlining the calculations of leading order results and enabling predictions for higher order corrections, the ad hoc nature of the reformulation leaves its domain of validity unclear. In contrast, the framework of Effective Field Theory (EFT) provides a systematic way to construct a completely equivalent point particle description. In this review we present a detailed account for how this is accomplished. In particular, we use a familiar example from electrostatics as an analogy to motivate the key steps needed to construct an EFT, most notably capturing finite size information in point-like "polarizabilities," and determining their value through a suitable "matching procedure." The interaction (free) energy then emerges as a systematic cumulant expansion, for which powerful diagrammatic techniques exist, which we also briefly revisit. We then apply this formalism to derive series expansions for interactions between flat and curved particle pairs, multibody interactions, as well as corrections to all these interactions due to thermal fluctuations.

DOI: 10.1016/j.cis.2014.02.017
PubMed: 24685271

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24685271

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Effective Field Theory approach towards membrane-mediated interactions between particles.</title>
<author>
<name sortKey="Yolcu, Cem" sort="Yolcu, Cem" uniqKey="Yolcu C" first="Cem" last="Yolcu">Cem Yolcu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Haussman, Robert C" sort="Haussman, Robert C" uniqKey="Haussman R" first="Robert C" last="Haussman">Robert C. Haussman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Deserno, Markus" sort="Deserno, Markus" uniqKey="Deserno M" first="Markus" last="Deserno">Markus Deserno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States. Electronic address: deserno@andrew.cmu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24685271</idno>
<idno type="pmid">24685271</idno>
<idno type="doi">10.1016/j.cis.2014.02.017</idno>
<idno type="wicri:Area/PubMed/Corpus">002989</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002989</idno>
<idno type="wicri:Area/PubMed/Curation">002976</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002976</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Effective Field Theory approach towards membrane-mediated interactions between particles.</title>
<author>
<name sortKey="Yolcu, Cem" sort="Yolcu, Cem" uniqKey="Yolcu C" first="Cem" last="Yolcu">Cem Yolcu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Haussman, Robert C" sort="Haussman, Robert C" uniqKey="Haussman R" first="Robert C" last="Haussman">Robert C. Haussman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Deserno, Markus" sort="Deserno, Markus" uniqKey="Deserno M" first="Markus" last="Deserno">Markus Deserno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States. Electronic address: deserno@andrew.cmu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in colloid and interface science</title>
<idno type="eISSN">1873-3727</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Biophysical Phenomena</term>
<term>Biophysics (methods)</term>
<term>Biophysics (trends)</term>
<term>Elasticity</term>
<term>Lipid Bilayers</term>
<term>Membrane Fluidity</term>
<term>Membranes, Artificial</term>
<term>Models, Biological</term>
<term>Static Electricity</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Biophysique ()</term>
<term>Biophysique (tendances)</term>
<term>Double couche lipidique</term>
<term>Fluidité membranaire</term>
<term>Membrane artificielle</term>
<term>Modèles biologiques</term>
<term>Phénomènes biophysiques</term>
<term>Propriétés de surface</term>
<term>Élasticité</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Lipid Bilayers</term>
<term>Membranes, Artificial</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biophysics</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Biophysique</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Biophysics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Biophysical Phenomena</term>
<term>Elasticity</term>
<term>Membrane Fluidity</term>
<term>Models, Biological</term>
<term>Static Electricity</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Biophysique</term>
<term>Double couche lipidique</term>
<term>Fluidité membranaire</term>
<term>Membrane artificielle</term>
<term>Modèles biologiques</term>
<term>Phénomènes biophysiques</term>
<term>Propriétés de surface</term>
<term>Élasticité</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fluid lipid membranes can mediate forces between particles bound to them: A local deformation of the surface geometry created by some object spreads to distant regions, where other objects can respond to it. The physical characteristics of these geometric interactions, and how they are affected by thermal fluctuations, are well described by the simple continuum curvature-elastic Hamiltonian proposed 40 years ago by Wolfgang Helfrich. Unfortunately, while the underlying principles are conceptually straightforward, the corresponding calculations are not-largely because one must enforce boundary conditions for finite-sized objects. This challenge has inspired several heuristic approaches for expressing the problem in a point particle language. While streamlining the calculations of leading order results and enabling predictions for higher order corrections, the ad hoc nature of the reformulation leaves its domain of validity unclear. In contrast, the framework of Effective Field Theory (EFT) provides a systematic way to construct a completely equivalent point particle description. In this review we present a detailed account for how this is accomplished. In particular, we use a familiar example from electrostatics as an analogy to motivate the key steps needed to construct an EFT, most notably capturing finite size information in point-like "polarizabilities," and determining their value through a suitable "matching procedure." The interaction (free) energy then emerges as a systematic cumulant expansion, for which powerful diagrammatic techniques exist, which we also briefly revisit. We then apply this formalism to derive series expansions for interactions between flat and curved particle pairs, multibody interactions, as well as corrections to all these interactions due to thermal fluctuations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24685271</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3727</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>208</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Advances in colloid and interface science</Title>
<ISOAbbreviation>Adv Colloid Interface Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The Effective Field Theory approach towards membrane-mediated interactions between particles.</ArticleTitle>
<Pagination>
<MedlinePgn>89-109</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cis.2014.02.017</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0001-8686(14)00074-8</ELocationID>
<Abstract>
<AbstractText>Fluid lipid membranes can mediate forces between particles bound to them: A local deformation of the surface geometry created by some object spreads to distant regions, where other objects can respond to it. The physical characteristics of these geometric interactions, and how they are affected by thermal fluctuations, are well described by the simple continuum curvature-elastic Hamiltonian proposed 40 years ago by Wolfgang Helfrich. Unfortunately, while the underlying principles are conceptually straightforward, the corresponding calculations are not-largely because one must enforce boundary conditions for finite-sized objects. This challenge has inspired several heuristic approaches for expressing the problem in a point particle language. While streamlining the calculations of leading order results and enabling predictions for higher order corrections, the ad hoc nature of the reformulation leaves its domain of validity unclear. In contrast, the framework of Effective Field Theory (EFT) provides a systematic way to construct a completely equivalent point particle description. In this review we present a detailed account for how this is accomplished. In particular, we use a familiar example from electrostatics as an analogy to motivate the key steps needed to construct an EFT, most notably capturing finite size information in point-like "polarizabilities," and determining their value through a suitable "matching procedure." The interaction (free) energy then emerges as a systematic cumulant expansion, for which powerful diagrammatic techniques exist, which we also briefly revisit. We then apply this formalism to derive series expansions for interactions between flat and curved particle pairs, multibody interactions, as well as corrections to all these interactions due to thermal fluctuations.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yolcu</LastName>
<ForeName>Cem</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haussman</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deserno</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States. Electronic address: deserno@andrew.cmu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Adv Colloid Interface Sci</MedlineTA>
<NlmUniqueID>8706645</NlmUniqueID>
<ISSNLinking>0001-8686</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008567">Membranes, Artificial</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055592" MajorTopicYN="N">Biophysical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001703" MajorTopicYN="N">Biophysics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="N">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008051" MajorTopicYN="N">Lipid Bilayers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008560" MajorTopicYN="N">Membrane Fluidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008567" MajorTopicYN="Y">Membranes, Artificial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Effective Field Theory</Keyword>
<Keyword MajorTopicYN="N">Lipid membranes</Keyword>
<Keyword MajorTopicYN="N">Mediated interactions</Keyword>
<Keyword MajorTopicYN="N">Proteins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24685271</ArticleId>
<ArticleId IdType="pii">S0001-8686(14)00074-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.cis.2014.02.017</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002976 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002976 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24685271
   |texte=   The Effective Field Theory approach towards membrane-mediated interactions between particles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24685271" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021