Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.

Identifieur interne : 002481 ( PubMed/Curation ); précédent : 002480; suivant : 002482

Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.

Auteurs : Hang Lin [États-Unis] ; Thomas P. Lozito ; Peter G. Alexander ; Riccardo Gottardi ; Rocky S. Tuan

Source :

RBID : pubmed:24830762

Descripteurs français

English descriptors

Abstract

Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential DMOADS.

DOI: 10.1021/mp500136b
PubMed: 24830762

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24830762

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.</title>
<author>
<name sortKey="Lin, Hang" sort="Lin, Hang" uniqKey="Lin H" first="Hang" last="Lin">Hang Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lozito, Thomas P" sort="Lozito, Thomas P" uniqKey="Lozito T" first="Thomas P" last="Lozito">Thomas P. Lozito</name>
</author>
<author>
<name sortKey="Alexander, Peter G" sort="Alexander, Peter G" uniqKey="Alexander P" first="Peter G" last="Alexander">Peter G. Alexander</name>
</author>
<author>
<name sortKey="Gottardi, Riccardo" sort="Gottardi, Riccardo" uniqKey="Gottardi R" first="Riccardo" last="Gottardi">Riccardo Gottardi</name>
</author>
<author>
<name sortKey="Tuan, Rocky S" sort="Tuan, Rocky S" uniqKey="Tuan R" first="Rocky S" last="Tuan">Rocky S. Tuan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24830762</idno>
<idno type="pmid">24830762</idno>
<idno type="doi">10.1021/mp500136b</idno>
<idno type="wicri:Area/PubMed/Corpus">002491</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002491</idno>
<idno type="wicri:Area/PubMed/Curation">002481</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002481</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.</title>
<author>
<name sortKey="Lin, Hang" sort="Lin, Hang" uniqKey="Lin H" first="Hang" last="Lin">Hang Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lozito, Thomas P" sort="Lozito, Thomas P" uniqKey="Lozito T" first="Thomas P" last="Lozito">Thomas P. Lozito</name>
</author>
<author>
<name sortKey="Alexander, Peter G" sort="Alexander, Peter G" uniqKey="Alexander P" first="Peter G" last="Alexander">Peter G. Alexander</name>
</author>
<author>
<name sortKey="Gottardi, Riccardo" sort="Gottardi, Riccardo" uniqKey="Gottardi R" first="Riccardo" last="Gottardi">Riccardo Gottardi</name>
</author>
<author>
<name sortKey="Tuan, Rocky S" sort="Tuan, Rocky S" uniqKey="Tuan R" first="Rocky S" last="Tuan">Rocky S. Tuan</name>
</author>
</analytic>
<series>
<title level="j">Molecular pharmaceutics</title>
<idno type="eISSN">1543-8392</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Basophils (metabolism)</term>
<term>Basophils (physiology)</term>
<term>Bioreactors</term>
<term>Cartilage, Articular (metabolism)</term>
<term>Cartilage, Articular (physiology)</term>
<term>Cell Differentiation (genetics)</term>
<term>Cell Differentiation (physiology)</term>
<term>Cells, Cultured</term>
<term>Chondrogenesis (genetics)</term>
<term>Chondrogenesis (physiology)</term>
<term>Female</term>
<term>Gene Expression (genetics)</term>
<term>Humans</term>
<term>Interleukin-1beta (genetics)</term>
<term>Interleukin-1beta (metabolism)</term>
<term>Matrix Metalloproteinases (genetics)</term>
<term>Matrix Metalloproteinases (metabolism)</term>
<term>Middle Aged</term>
<term>Osteogenesis (genetics)</term>
<term>Osteogenesis (physiology)</term>
<term>Stem Cells (metabolism)</term>
<term>Stem Cells (physiology)</term>
<term>Tissue Engineering (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Bioréacteurs</term>
<term>Cartilage articulaire (métabolisme)</term>
<term>Cartilage articulaire (physiologie)</term>
<term>Cellules cultivées</term>
<term>Cellules souches (métabolisme)</term>
<term>Cellules souches (physiologie)</term>
<term>Chondrogenèse (génétique)</term>
<term>Chondrogenèse (physiologie)</term>
<term>Différenciation cellulaire (génétique)</term>
<term>Différenciation cellulaire (physiologie)</term>
<term>Expression des gènes (génétique)</term>
<term>Femelle</term>
<term>Granulocytes basophiles (métabolisme)</term>
<term>Granulocytes basophiles (physiologie)</term>
<term>Humains</term>
<term>Ingénierie tissulaire ()</term>
<term>Interleukine-1 bêta (génétique)</term>
<term>Interleukine-1 bêta (métabolisme)</term>
<term>Matrix metalloproteinases (génétique)</term>
<term>Matrix metalloproteinases (métabolisme)</term>
<term>Ostéogenèse (génétique)</term>
<term>Ostéogenèse (physiologie)</term>
<term>Sujet âgé</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Interleukin-1beta</term>
<term>Matrix Metalloproteinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Differentiation</term>
<term>Chondrogenesis</term>
<term>Gene Expression</term>
<term>Osteogenesis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chondrogenèse</term>
<term>Différenciation cellulaire</term>
<term>Expression des gènes</term>
<term>Interleukine-1 bêta</term>
<term>Matrix metalloproteinases</term>
<term>Ostéogenèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basophils</term>
<term>Cartilage, Articular</term>
<term>Interleukin-1beta</term>
<term>Matrix Metalloproteinases</term>
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Tissue Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cartilage articulaire</term>
<term>Cellules souches</term>
<term>Granulocytes basophiles</term>
<term>Interleukine-1 bêta</term>
<term>Matrix metalloproteinases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cartilage articulaire</term>
<term>Cellules souches</term>
<term>Chondrogenèse</term>
<term>Différenciation cellulaire</term>
<term>Granulocytes basophiles</term>
<term>Ostéogenèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basophils</term>
<term>Cartilage, Articular</term>
<term>Cell Differentiation</term>
<term>Chondrogenesis</term>
<term>Osteogenesis</term>
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Bioreactors</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Humans</term>
<term>Middle Aged</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Bioréacteurs</term>
<term>Cellules cultivées</term>
<term>Femelle</term>
<term>Humains</term>
<term>Ingénierie tissulaire</term>
<term>Sujet âgé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential DMOADS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24830762</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1543-8392</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Molecular pharmaceutics</Title>
<ISOAbbreviation>Mol. Pharm.</ISOAbbreviation>
</Journal>
<ArticleTitle>Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.</ArticleTitle>
<Pagination>
<MedlinePgn>2203-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/mp500136b</ELocationID>
<Abstract>
<AbstractText>Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential DMOADS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Hang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lozito</LastName>
<ForeName>Thomas P</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alexander</LastName>
<ForeName>Peter G</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gottardi</LastName>
<ForeName>Riccardo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tuan</LastName>
<ForeName>Rocky S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U18 TR000532</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U18TR000532</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Pharm</MedlineTA>
<NlmUniqueID>101197791</NlmUniqueID>
<ISSNLinking>1543-8384</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053583">Interleukin-1beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.-</RegistryNumber>
<NameOfSubstance UI="D020782">Matrix Metalloproteinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Rheumatol. 2011 Jan;7(1):33-42</RefSource>
<PMID Version="1">21119608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res A. 2012 Jan;100(1):162-70</RefSource>
<PMID Version="1">22009693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Regen Med. 2012 Jul;7(4):551-70</RefSource>
<PMID Version="1">22817628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Rheum Dis. 2008 Dec;67 Suppl 3:iii75-82</RefSource>
<PMID Version="1">19022820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bone. 2012 Aug;51(2):212-7</RefSource>
<PMID Version="1">22197997</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2014 Sep;20(17-18):2402-11</RefSource>
<PMID Version="1">24575844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PM R. 2011 Jun;3(6 Suppl 1):S3-11</RefSource>
<PMID Version="1">21703577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Exp Pathol. 2010 Apr;91(2):99-106</RefSource>
<PMID Version="1">20384821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(1):e54838</RefSource>
<PMID Version="1">23382984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomacromolecules. 2000 Spring;1(1):31-8</RefSource>
<PMID Version="1">11709840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2009 Sep;30(26):4287-96</RefSource>
<PMID Version="1">19464053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arthritis Rheum. 2003 Dec;48(12):3452-63</RefSource>
<PMID Version="1">14673996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part C Methods. 2012 Jan;18(1):45-53</RefSource>
<PMID Version="1">21875392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Life Sci. 2006 Mar 20;78(17):1975-82</RefSource>
<PMID Version="1">16313928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Fluid Mech. 2009 Jan 1;41:347-374</RefSource>
<PMID Version="1">20072666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Orthod Craniofac Res. 2005 Aug;8(3):209-18</RefSource>
<PMID Version="1">16022723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2010 Jul;31(21):5536-44</RefSource>
<PMID Version="1">20417964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Orthop Res. 2009 Oct;27(10):1347-52</RefSource>
<PMID Version="1">19360842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Best Pract Res Clin Rheumatol. 2006 Oct;20(5):1003-25</RefSource>
<PMID Version="1">16980220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Agents Actions Suppl. 1993;39:3-13</RefSource>
<PMID Version="1">8456642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(11):e80004</RefSource>
<PMID Version="1">24260335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bone. 2009 May;44(5):1015-7</RefSource>
<PMID Version="1">19442607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Surg Res. 2012 Mar;173(1):99-104</RefSource>
<PMID Version="1">21035140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bonekey Rep. 2014 Feb 05;3:493</RefSource>
<PMID Version="1">24605210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Rheumatol Rep. 2012 Dec;14(6):549-56</RefSource>
<PMID Version="1">22798062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2009 Dec;30(35):6702-7</RefSource>
<PMID Version="1">19783300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Cell Mater. 2007;13:56-65; discussion 65</RefSource>
<PMID Version="1">17427142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bone. 2012 Aug;51(2):204-11</RefSource>
<PMID Version="1">22023932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part B Rev. 2011 Aug;17(4):281-99</RefSource>
<PMID Version="1">21510824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Healthc Mater. 2013 Jun;2(6):846-53</RefSource>
<PMID Version="1">23193109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Rheumatol. 2011 Jan;7(1):43-9</RefSource>
<PMID Version="1">21135881</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arthritis Res Ther. 2010;12(2):R49</RefSource>
<PMID Version="1">20307272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Adv. 2013 Sep-Oct;31(5):706-21</RefSource>
<PMID Version="1">23174560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Best Pract Res Clin Rheumatol. 2011 Dec;25(6):815-23</RefSource>
<PMID Version="1">22265263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Care. 2003 Dec;41(12):1367-73</RefSource>
<PMID Version="1">14668669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2014 Apr;111(4):829-41</RefSource>
<PMID Version="1">24293388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2011 Oct;32(29):6946-52</RefSource>
<PMID Version="1">21723599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Osteoporos Int. 2012 Dec;23 Suppl 8:S847-51</RefSource>
<PMID Version="1">23179567</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001491" MajorTopicYN="N">Basophils</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019149" MajorTopicYN="N">Bioreactors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002358" MajorTopicYN="N">Cartilage, Articular</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020219" MajorTopicYN="N">Chondrogenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053583" MajorTopicYN="N">Interleukin-1beta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020782" MajorTopicYN="N">Matrix Metalloproteinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010012" MajorTopicYN="N">Osteogenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013234" MajorTopicYN="N">Stem Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023822" MajorTopicYN="N">Tissue Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4086740</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24830762</ArticleId>
<ArticleId IdType="doi">10.1021/mp500136b</ArticleId>
<ArticleId IdType="pmc">PMC4086740</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002481 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002481 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24830762
   |texte=   Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24830762" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021