Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Macromolecular engineering by atom transfer radical polymerization.

Identifieur interne : 002D55 ( PubMed/Corpus ); précédent : 002D54; suivant : 002D56

Macromolecular engineering by atom transfer radical polymerization.

Auteurs : Krzysztof Matyjaszewski ; Nicolay V. Tsarevsky

Source :

RBID : pubmed:24758377

English descriptors

Abstract

This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP--monomers, initiators, catalysts, and various additives--are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed.

DOI: 10.1021/ja408069v
PubMed: 24758377

Links to Exploration step

pubmed:24758377

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Macromolecular engineering by atom transfer radical polymerization.</title>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsarevsky, Nicolay V" sort="Tsarevsky, Nicolay V" uniqKey="Tsarevsky N" first="Nicolay V" last="Tsarevsky">Nicolay V. Tsarevsky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24758377</idno>
<idno type="pmid">24758377</idno>
<idno type="doi">10.1021/ja408069v</idno>
<idno type="wicri:Area/PubMed/Corpus">002D55</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002D55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Macromolecular engineering by atom transfer radical polymerization.</title>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsarevsky, Nicolay V" sort="Tsarevsky, Nicolay V" uniqKey="Tsarevsky N" first="Nicolay V" last="Tsarevsky">Nicolay V. Tsarevsky</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="eISSN">1520-5126</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis</term>
<term>Kinetics</term>
<term>Polymerization</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Kinetics</term>
<term>Polymerization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP--monomers, initiators, catalysts, and various additives--are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24758377</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>136</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation>
</Journal>
<ArticleTitle>Macromolecular engineering by atom transfer radical polymerization.</ArticleTitle>
<Pagination>
<MedlinePgn>6513-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ja408069v</ELocationID>
<Abstract>
<AbstractText>This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP--monomers, initiators, catalysts, and various additives--are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matyjaszewski</LastName>
<ForeName>Krzysztof</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsarevsky</LastName>
<ForeName>Nicolay V</ForeName>
<Initials>NV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058105" MajorTopicYN="Y">Polymerization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24758377</ArticleId>
<ArticleId IdType="doi">10.1021/ja408069v</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002D55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24758377
   |texte=   Macromolecular engineering by atom transfer radical polymerization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24758377" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021