Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structurally-constrained relationships between cognitive states in the human brain.

Identifieur interne : 002D16 ( PubMed/Corpus ); précédent : 002D15; suivant : 002D17

Structurally-constrained relationships between cognitive states in the human brain.

Auteurs : Ann M. Hermundstad ; Kevin S. Brown ; Danielle S. Bassett ; Elissa M. Aminoff ; Amy Frithsen ; Arianne Johnson ; Christine M. Tipper ; Michael B. Miller ; Scott T. Grafton ; Jean M. Carlson

Source :

RBID : pubmed:24830758

English descriptors

Abstract

The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

DOI: 10.1371/journal.pcbi.1003591
PubMed: 24830758

Links to Exploration step

pubmed:24830758

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structurally-constrained relationships between cognitive states in the human brain.</title>
<author>
<name sortKey="Hermundstad, Ann M" sort="Hermundstad, Ann M" uniqKey="Hermundstad A" first="Ann M" last="Hermundstad">Ann M. Hermundstad</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin S" sort="Brown, Kevin S" uniqKey="Brown K" first="Kevin S" last="Brown">Kevin S. Brown</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bassett, Danielle S" sort="Bassett, Danielle S" uniqKey="Bassett D" first="Danielle S" last="Bassett">Danielle S. Bassett</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aminoff, Elissa M" sort="Aminoff, Elissa M" uniqKey="Aminoff E" first="Elissa M" last="Aminoff">Elissa M. Aminoff</name>
<affiliation>
<nlm:affiliation>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frithsen, Amy" sort="Frithsen, Amy" uniqKey="Frithsen A" first="Amy" last="Frithsen">Amy Frithsen</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Arianne" sort="Johnson, Arianne" uniqKey="Johnson A" first="Arianne" last="Johnson">Arianne Johnson</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tipper, Christine M" sort="Tipper, Christine M" uniqKey="Tipper C" first="Christine M" last="Tipper">Christine M. Tipper</name>
<affiliation>
<nlm:affiliation>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Michael B" sort="Miller, Michael B" uniqKey="Miller M" first="Michael B" last="Miller">Michael B. Miller</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T" last="Grafton">Scott T. Grafton</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Jean M" sort="Carlson, Jean M" uniqKey="Carlson J" first="Jean M" last="Carlson">Jean M. Carlson</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24830758</idno>
<idno type="pmid">24830758</idno>
<idno type="doi">10.1371/journal.pcbi.1003591</idno>
<idno type="wicri:Area/PubMed/Corpus">002D16</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002D16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structurally-constrained relationships between cognitive states in the human brain.</title>
<author>
<name sortKey="Hermundstad, Ann M" sort="Hermundstad, Ann M" uniqKey="Hermundstad A" first="Ann M" last="Hermundstad">Ann M. Hermundstad</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, Kevin S" sort="Brown, Kevin S" uniqKey="Brown K" first="Kevin S" last="Brown">Kevin S. Brown</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bassett, Danielle S" sort="Bassett, Danielle S" uniqKey="Bassett D" first="Danielle S" last="Bassett">Danielle S. Bassett</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aminoff, Elissa M" sort="Aminoff, Elissa M" uniqKey="Aminoff E" first="Elissa M" last="Aminoff">Elissa M. Aminoff</name>
<affiliation>
<nlm:affiliation>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frithsen, Amy" sort="Frithsen, Amy" uniqKey="Frithsen A" first="Amy" last="Frithsen">Amy Frithsen</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Arianne" sort="Johnson, Arianne" uniqKey="Johnson A" first="Arianne" last="Johnson">Arianne Johnson</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tipper, Christine M" sort="Tipper, Christine M" uniqKey="Tipper C" first="Christine M" last="Tipper">Christine M. Tipper</name>
<affiliation>
<nlm:affiliation>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Michael B" sort="Miller, Michael B" uniqKey="Miller M" first="Michael B" last="Miller">Michael B. Miller</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T" last="Grafton">Scott T. Grafton</name>
<affiliation>
<nlm:affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carlson, Jean M" sort="Carlson, Jean M" uniqKey="Carlson J" first="Jean M" last="Carlson">Jean M. Carlson</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Attention (physiology)</term>
<term>Brain (anatomy & histology)</term>
<term>Brain (physiology)</term>
<term>Cognition (physiology)</term>
<term>Computer Simulation</term>
<term>Connectome (methods)</term>
<term>Humans</term>
<term>Memory (physiology)</term>
<term>Models, Anatomic</term>
<term>Models, Neurological</term>
<term>Nerve Net (anatomy & histology)</term>
<term>Nerve Net (physiology)</term>
<term>White Matter (anatomy & histology)</term>
<term>White Matter (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Brain</term>
<term>Nerve Net</term>
<term>White Matter</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Connectome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Attention</term>
<term>Brain</term>
<term>Cognition</term>
<term>Memory</term>
<term>Nerve Net</term>
<term>White Matter</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Models, Neurological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24830758</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structurally-constrained relationships between cognitive states in the human brain.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003591</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003591</ELocationID>
<Abstract>
<AbstractText>The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hermundstad</LastName>
<ForeName>Ann M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Kevin S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Physics, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Conneticutt, United States of America; Department of Marine Sciences, University of Connecticut, Groton, Conneticutt, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bassett</LastName>
<ForeName>Danielle S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America; Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aminoff</LastName>
<ForeName>Elissa M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frithsen</LastName>
<ForeName>Amy</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Arianne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tipper</LastName>
<ForeName>Christine M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Michael B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grafton</LastName>
<ForeName>Scott T</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>Jean M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Schizophr Bull. 2012 Mar;38(2):285-94</RefSource>
<PMID Version="1">20595202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2009 Jan;19(1):72-8</RefSource>
<PMID Version="1">18403396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Apr 2;60(2):1117-26</RefSource>
<PMID Version="1">22281670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Feb 15;39(4):1877-85</RefSource>
<PMID Version="1">18083565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Jan 1;49(1):1045-54</RefSource>
<PMID Version="1">19647800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Connect. 2011;1(4):339-47</RefSource>
<PMID Version="1">22432423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12788-93</RefSource>
<PMID Version="1">22807481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jun 1;56(3):1222-34</RefSource>
<PMID Version="1">21420500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2013;9(9):e1003171</RefSource>
<PMID Version="1">24086116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2007 Sep;8(9):700-11</RefSource>
<PMID Version="1">17704812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 May 1;50(4):1690-701</RefSource>
<PMID Version="1">20079856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2009 May;5(5):e1000381</RefSource>
<PMID Version="1">19412534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2009 Sep 30;183(1):86-94</RefSource>
<PMID Version="1">19607860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19585-90</RefSource>
<PMID Version="1">24218604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Imaging Behav. 2009 Jan 14;3(2):123-131</RefSource>
<PMID Version="1">19568331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53</RefSource>
<PMID Version="1">16945915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Connect. 2013;3(2):121-45</RefSource>
<PMID Version="1">23442172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Nov 17;72(4):665-78</RefSource>
<PMID Version="1">22099467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6169-74</RefSource>
<PMID Version="1">23530246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 Mar;10(3):186-98</RefSource>
<PMID Version="1">19190637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2006;29:449-76</RefSource>
<PMID Version="1">16776593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jan 4;26(1):63-72</RefSource>
<PMID Version="1">16399673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Hum Neurosci. 2012 May 23;6:137</RefSource>
<PMID Version="1">22654746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mem Cognit. 2012 Oct;40(7):1016-30</RefSource>
<PMID Version="1">22555888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Sep 10;28(37):9239-48</RefSource>
<PMID Version="1">18784304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neuroinform. 2013 Jun 11;7:10</RefSource>
<PMID Version="1">23781198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inf Process Med Imaging. 2003 Jul;18:684-95</RefSource>
<PMID Version="1">15344498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2009 Mar;33(3):279-96</RefSource>
<PMID Version="1">18824195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Feb 28;27(9):2349-56</RefSource>
<PMID Version="1">17329432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8</RefSource>
<PMID Version="1">15976020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2009 Jul;7(7):e1000157</RefSource>
<PMID Version="1">19621066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4392-7</RefSource>
<PMID Version="1">23440216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Oct;17(10):2407-19</RefSource>
<PMID Version="1">17204824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Jan;15(1):273-89</RefSource>
<PMID Version="1">11771995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6</RefSource>
<PMID Version="1">21502525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 15;54(2):1262-79</RefSource>
<PMID Version="1">20850551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82</RefSource>
<PMID Version="1">11209064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Mar;50(1):81-98</RefSource>
<PMID Version="1">20006716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Clin Psychol. 2011;7:113-40</RefSource>
<PMID Version="1">21128784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2007 Feb 2;3(2):e17</RefSource>
<PMID Version="1">17274684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8</RefSource>
<PMID Version="1">12506194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Imaging. 2010 Oct;28(8):1051-7</RefSource>
<PMID Version="1">20409665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8</RefSource>
<PMID Version="1">17576922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51</RefSource>
<PMID Version="1">16788060</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 Jun 1;50(5):799-812</RefSource>
<PMID Version="1">16731517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2008 Jun 30;171(2):349-55</RefSource>
<PMID Version="1">18486233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2014 Mar;24(3):663-76</RefSource>
<PMID Version="1">23146964</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001288" MajorTopicYN="N">Attention</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003071" MajorTopicYN="N">Cognition</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063132" MajorTopicYN="N">Connectome</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008568" MajorTopicYN="N">Memory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008953" MajorTopicYN="Y">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008959" MajorTopicYN="Y">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066127" MajorTopicYN="N">White Matter</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4022461</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24830758</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003591</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-01309</ArticleId>
<ArticleId IdType="pmc">PMC4022461</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002D16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24830758
   |texte=   Structurally-constrained relationships between cognitive states in the human brain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24830758" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021