Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrating diverse datasets improves developmental enhancer prediction.

Identifieur interne : 002A86 ( PubMed/Corpus ); précédent : 002A85; suivant : 002A87

Integrating diverse datasets improves developmental enhancer prediction.

Auteurs : Genevieve D. Erwin ; Nir Oksenberg ; Rebecca M. Truty ; Dennis Kostka ; Karl K. Murphy ; Nadav Ahituv ; Katherine S. Pollard ; John A. Capra

Source :

RBID : pubmed:24967590

English descriptors

Abstract

Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology.

DOI: 10.1371/journal.pcbi.1003677
PubMed: 24967590

Links to Exploration step

pubmed:24967590

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integrating diverse datasets improves developmental enhancer prediction.</title>
<author>
<name sortKey="Erwin, Genevieve D" sort="Erwin, Genevieve D" uniqKey="Erwin G" first="Genevieve D" last="Erwin">Genevieve D. Erwin</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oksenberg, Nir" sort="Oksenberg, Nir" uniqKey="Oksenberg N" first="Nir" last="Oksenberg">Nir Oksenberg</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truty, Rebecca M" sort="Truty, Rebecca M" uniqKey="Truty R" first="Rebecca M" last="Truty">Rebecca M. Truty</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kostka, Dennis" sort="Kostka, Dennis" uniqKey="Kostka D" first="Dennis" last="Kostka">Dennis Kostka</name>
<affiliation>
<nlm:affiliation>Department of Developmental Biology and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, Karl K" sort="Murphy, Karl K" uniqKey="Murphy K" first="Karl K" last="Murphy">Karl K. Murphy</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahituv, Nadav" sort="Ahituv, Nadav" uniqKey="Ahituv N" first="Nadav" last="Ahituv">Nadav Ahituv</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pollard, Katherine S" sort="Pollard, Katherine S" uniqKey="Pollard K" first="Katherine S" last="Pollard">Katherine S. Pollard</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Capra, John A" sort="Capra, John A" uniqKey="Capra J" first="John A" last="Capra">John A. Capra</name>
<affiliation>
<nlm:affiliation>Center for Human Genetics Research and Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24967590</idno>
<idno type="pmid">24967590</idno>
<idno type="doi">10.1371/journal.pcbi.1003677</idno>
<idno type="wicri:Area/PubMed/Corpus">002A86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Integrating diverse datasets improves developmental enhancer prediction.</title>
<author>
<name sortKey="Erwin, Genevieve D" sort="Erwin, Genevieve D" uniqKey="Erwin G" first="Genevieve D" last="Erwin">Genevieve D. Erwin</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oksenberg, Nir" sort="Oksenberg, Nir" uniqKey="Oksenberg N" first="Nir" last="Oksenberg">Nir Oksenberg</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Truty, Rebecca M" sort="Truty, Rebecca M" uniqKey="Truty R" first="Rebecca M" last="Truty">Rebecca M. Truty</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kostka, Dennis" sort="Kostka, Dennis" uniqKey="Kostka D" first="Dennis" last="Kostka">Dennis Kostka</name>
<affiliation>
<nlm:affiliation>Department of Developmental Biology and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, Karl K" sort="Murphy, Karl K" uniqKey="Murphy K" first="Karl K" last="Murphy">Karl K. Murphy</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahituv, Nadav" sort="Ahituv, Nadav" uniqKey="Ahituv N" first="Nadav" last="Ahituv">Nadav Ahituv</name>
<affiliation>
<nlm:affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pollard, Katherine S" sort="Pollard, Katherine S" uniqKey="Pollard K" first="Katherine S" last="Pollard">Katherine S. Pollard</name>
<affiliation>
<nlm:affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Capra, John A" sort="Capra, John A" uniqKey="Capra J" first="John A" last="Capra">John A. Capra</name>
<affiliation>
<nlm:affiliation>Center for Human Genetics Research and Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Databases, Genetic</term>
<term>Enhancer Elements, Genetic (genetics)</term>
<term>Genome-Wide Association Study</term>
<term>Genomics (methods)</term>
<term>Histones (genetics)</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Models, Statistical</term>
<term>Organ Specificity (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Histones</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enhancer Elements, Genetic</term>
<term>Organ Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Databases, Genetic</term>
<term>Genome-Wide Association Study</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Models, Statistical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24967590</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Integrating diverse datasets improves developmental enhancer prediction.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003677</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003677</ELocationID>
<Abstract>
<AbstractText>Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Erwin</LastName>
<ForeName>Genevieve D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oksenberg</LastName>
<ForeName>Nir</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Truty</LastName>
<ForeName>Rebecca M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kostka</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Developmental Biology and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murphy</LastName>
<ForeName>Karl K</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahituv</LastName>
<ForeName>Nadav</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pollard</LastName>
<ForeName>Katherine S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America; Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Capra</LastName>
<ForeName>John A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Center for Human Genetics Research and Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL098179</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HD059862</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HG005058</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM067547</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 HL098188</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK090382</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM61390</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HG006768</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS079231</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM082901</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2007 Mar;39(3):311-8</RefSource>
<PMID Version="1">17277777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 1998 Sep 15;10(7):1895-1923</RefSource>
<PMID Version="1">9744903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2006 Oct 13;2(10):e168</RefSource>
<PMID Version="1">17040131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7</RefSource>
<PMID Version="1">19474294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2008 Feb;18(2):252-60</RefSource>
<PMID Version="1">18071029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Jun 8;316(5830):1497-502</RefSource>
<PMID Version="1">17540862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2010 Mar;20(3):381-92</RefSource>
<PMID Version="1">20075146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2011 Feb;12(2):76</RefSource>
<PMID Version="1">21173773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Jun 14;447(7146):799-816</RefSource>
<PMID Version="1">17571346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11952-7</RefSource>
<PMID Version="1">23818646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2008 Jul;40(7):897-903</RefSource>
<PMID Version="1">18552846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2012 Aug 1;368(1):127-39</RefSource>
<PMID Version="1">22595514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2012 Jan 1;28(1):56-62</RefSource>
<PMID Version="1">22072382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Sep 3;461(7260):95-8</RefSource>
<PMID Version="1">19727199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2011 Apr;12(4):283-93</RefSource>
<PMID Version="1">21358745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2010 Sep;42(9):806-10</RefSource>
<PMID Version="1">20729851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2007 Jun;17(6):877-85</RefSource>
<PMID Version="1">17179217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunity. 2010 Mar 26;32(3):317-28</RefSource>
<PMID Version="1">20206554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Sep 28;151(1):221-32</RefSource>
<PMID Version="1">22981225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2011 Dec;21(12):2167-80</RefSource>
<PMID Version="1">21875935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genomics Hum Genet. 2010;11:1-23</RefSource>
<PMID Version="1">20438361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2011 Jan;12(1):7-18</RefSource>
<PMID Version="1">21116306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Sep 6;489(7414):75-82</RefSource>
<PMID Version="1">22955617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2012;13(9):R48</RefSource>
<PMID Version="1">22950945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Nov 23;444(7118):499-502</RefSource>
<PMID Version="1">17086198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Jun;22(6):1069-80</RefSource>
<PMID Version="1">22421546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(3):e1820</RefSource>
<PMID Version="1">18364997</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Mar 27;507(7493):455-61</RefSource>
<PMID Version="1">24670763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2012 Feb;44(2):148-56</RefSource>
<PMID Version="1">22231485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Oct 27;478(7370):476-82</RefSource>
<PMID Version="1">21993624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet A. 2003 Jun 15;119A(3):257-65</RefSource>
<PMID Version="1">12784289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2007 May 18;129(4):823-37</RefSource>
<PMID Version="1">17512414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5632-7</RefSource>
<PMID Version="1">21415370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(3):e1002531</RefSource>
<PMID Version="1">22412381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6</RefSource>
<PMID Version="1">21106759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Feb 23;73(4):713-28</RefSource>
<PMID Version="1">22365546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 May;9(5):473-6</RefSource>
<PMID Version="1">22426492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Sep 6;489(7414):57-74</RefSource>
<PMID Version="1">22955616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 Dec 15;21(26):5429-42</RefSource>
<PMID Version="1">23001561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2008 Feb;40(2):158-60</RefSource>
<PMID Version="1">18176564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2005 Aug;15(8):1034-50</RefSource>
<PMID Version="1">16024819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Jul 28;126(2):403-13</RefSource>
<PMID Version="1">16873069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Nov 5;462(7269):65-70</RefSource>
<PMID Version="1">19890324</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20828-33</RefSource>
<PMID Version="1">21079000</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2010 May;28(5):495-501</RefSource>
<PMID Version="1">20436461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2009 Oct;17(4):568-79</RefSource>
<PMID Version="1">19853570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2011 Mar;21(3):447-55</RefSource>
<PMID Version="1">21106904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Aug;41(8):941-5</RefSource>
<PMID Version="1">19633671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7</RefSource>
<PMID Version="1">15075390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2012 Jan;44(1):89-93</RefSource>
<PMID Version="1">22138689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Sep;22(9):1723-34</RefSource>
<PMID Version="1">22955984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Aug 2;448(7153):553-60</RefSource>
<PMID Version="1">17603471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2010 Mar 15;26(6):841-2</RefSource>
<PMID Version="1">20110278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2005 Jan;3(1):e7</RefSource>
<PMID Version="1">15630479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007 Jan;35(Database issue):D88-92</RefSource>
<PMID Version="1">17130149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2000 Apr;127(7):1387-95</RefSource>
<PMID Version="1">10704385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2010;609:223-39</RefSource>
<PMID Version="1">20221922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2006 Jul 15;22(14):e472-80</RefSource>
<PMID Version="1">16873509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Oct 17;302(5644):413</RefSource>
<PMID Version="1">14563999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2012 Feb 15;28(4):581-3</RefSource>
<PMID Version="1">22199387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2007 Jun;17(6):691-707</RefSource>
<PMID Version="1">17567990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2010 Jan 15;337(2):484-95</RefSource>
<PMID Version="1">19850031</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Sep 28;151(1):206-20</RefSource>
<PMID Version="1">22981692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2013;9(1):e1003221</RefSource>
<PMID Version="1">23349641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Feb 12;457(7231):854-8</RefSource>
<PMID Version="1">19212405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2011 Aug;21(8):1273-83</RefSource>
<PMID Version="1">21632746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2012;13(1):238</RefSource>
<PMID Version="1">22269347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12919-24</RefSource>
<PMID Version="1">17644613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2010 Oct 1;143(1):46-58</RefSource>
<PMID Version="1">20887892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 May 7;459(7243):108-12</RefSource>
<PMID Version="1">19295514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2013 Dec 19;155(7):1521-31</RefSource>
<PMID Version="1">24360275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Feb 10;470(7333):279-83</RefSource>
<PMID Version="1">21160473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Sep 14;20(17):R754-63</RefSource>
<PMID Version="1">20833320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Nov;22(11):2290-301</RefSource>
<PMID Version="1">23019145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pac Symp Biocomput. 2002;:564-75</RefSource>
<PMID Version="1">11928508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2001 Sep 15;15(18):2470-82</RefSource>
<PMID Version="1">11562355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cells Tissues Organs. 2010;192(2):73-84</RefSource>
<PMID Version="1">20185898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Sep;22(9):1658-67</RefSource>
<PMID Version="1">22955978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Sep;41(9):1037-42</RefSource>
<PMID Version="1">19668217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Sep 10;461(7261):199-205</RefSource>
<PMID Version="1">19741700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2000 Apr 12;9(7):1021-32</RefSource>
<PMID Version="1">10767326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Nov;22(11):2278-89</RefSource>
<PMID Version="1">22759862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 May 5;473(7345):43-9</RefSource>
<PMID Version="1">21441907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Nov;12(11):1373-80</RefSource>
<PMID Version="1">19838179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1983 Jul;33(3):717-28</RefSource>
<PMID Version="1">6409417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2011 Apr 1;27(7):1017-8</RefSource>
<PMID Version="1">21330290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2008 Jan 25;132(2):311-22</RefSource>
<PMID Version="1">18243105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 2009 Jun;93(6):509-13</RefSource>
<PMID Version="1">19268701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2010 Mar;26(3):110-8</RefSource>
<PMID Version="1">20106546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2013 Dec 19;368(1632):20130025</RefSource>
<PMID Version="1">24218637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2010 Apr;42(4):343-7</RefSource>
<PMID Version="1">20208536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2013;9(3):e1002968</RefSource>
<PMID Version="1">23526891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Feb 4;144(3):327-39</RefSource>
<PMID Version="1">21295696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2006 Jul;16(7):855-63</RefSource>
<PMID Version="1">16769978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1981 Dec;27(2 Pt 1):299-308</RefSource>
<PMID Version="1">6277502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2010;11(1):R7</RefSource>
<PMID Version="1">20096096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2013 Feb 14;152(4):895-908</RefSource>
<PMID Version="1">23375746</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001185" MajorTopicYN="N">Artificial Intelligence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="Y">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="N">Enhancer Elements, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4072507</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24967590</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003677</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-01447</ArticleId>
<ArticleId IdType="pmc">PMC4072507</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24967590
   |texte=   Integrating diverse datasets improves developmental enhancer prediction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24967590" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021