Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wireless monitoring of liver hemodynamics in vivo.

Identifieur interne : 002415 ( PubMed/Corpus ); précédent : 002414; suivant : 002416

Wireless monitoring of liver hemodynamics in vivo.

Auteurs : Tony J. Akl ; Mark A. Wilson ; M Nance Ericson ; Ethan Farquhar ; Gerard L. Coté

Source :

RBID : pubmed:25019160

English descriptors

Abstract

Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.

DOI: 10.1371/journal.pone.0102396
PubMed: 25019160

Links to Exploration step

pubmed:25019160

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wireless monitoring of liver hemodynamics in vivo.</title>
<author>
<name sortKey="Akl, Tony J" sort="Akl, Tony J" uniqKey="Akl T" first="Tony J" last="Akl">Tony J. Akl</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Mark A" sort="Wilson, Mark A" uniqKey="Wilson M" first="Mark A" last="Wilson">Mark A. Wilson</name>
<affiliation>
<nlm:affiliation>Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ericson, M Nance" sort="Ericson, M Nance" uniqKey="Ericson M" first="M Nance" last="Ericson">M Nance Ericson</name>
<affiliation>
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Farquhar, Ethan" sort="Farquhar, Ethan" uniqKey="Farquhar E" first="Ethan" last="Farquhar">Ethan Farquhar</name>
<affiliation>
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cote, Gerard L" sort="Cote, Gerard L" uniqKey="Cote G" first="Gerard L" last="Coté">Gerard L. Coté</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25019160</idno>
<idno type="pmid">25019160</idno>
<idno type="doi">10.1371/journal.pone.0102396</idno>
<idno type="wicri:Area/PubMed/Corpus">002415</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002415</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Wireless monitoring of liver hemodynamics in vivo.</title>
<author>
<name sortKey="Akl, Tony J" sort="Akl, Tony J" uniqKey="Akl T" first="Tony J" last="Akl">Tony J. Akl</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Mark A" sort="Wilson, Mark A" uniqKey="Wilson M" first="Mark A" last="Wilson">Mark A. Wilson</name>
<affiliation>
<nlm:affiliation>Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ericson, M Nance" sort="Ericson, M Nance" uniqKey="Ericson M" first="M Nance" last="Ericson">M Nance Ericson</name>
<affiliation>
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Farquhar, Ethan" sort="Farquhar, Ethan" uniqKey="Farquhar E" first="Ethan" last="Farquhar">Ethan Farquhar</name>
<affiliation>
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cote, Gerard L" sort="Cote, Gerard L" uniqKey="Cote G" first="Gerard L" last="Coté">Gerard L. Coté</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Hemodynamics</term>
<term>Liver (metabolism)</term>
<term>Liver (physiology)</term>
<term>Liver Transplantation</term>
<term>Male</term>
<term>Monitoring, Physiologic (instrumentation)</term>
<term>Monitoring, Physiologic (methods)</term>
<term>Oxygen Consumption</term>
<term>Photoplethysmography</term>
<term>Spectroscopy, Near-Infrared</term>
<term>Swine</term>
<term>Wireless Technology</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Monitoring, Physiologic</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Monitoring, Physiologic</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Hemodynamics</term>
<term>Liver Transplantation</term>
<term>Male</term>
<term>Oxygen Consumption</term>
<term>Photoplethysmography</term>
<term>Spectroscopy, Near-Infrared</term>
<term>Swine</term>
<term>Wireless Technology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25019160</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Wireless monitoring of liver hemodynamics in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>e102396</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0102396</ELocationID>
<Abstract>
<AbstractText>Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Akl</LastName>
<ForeName>Tony J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ericson</LastName>
<ForeName>M Nance</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Farquhar</LastName>
<ForeName>Ethan</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coté</LastName>
<ForeName>Gerard L</ForeName>
<Initials>GL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5R01-GM077150</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Nov 1;53(2):553-64</RefSource>
<PMID Version="1">20600975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2013 Aug;18(8):87005</RefSource>
<PMID Version="1">23942635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 1999 Jul;87(1):348-55</RefSource>
<PMID Version="1">10409594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Jan;13(1):76-90</RefSource>
<PMID Version="1">11133311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transplantation. 1996 Mar 15;61(5):689-96</RefSource>
<PMID Version="1">8607168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Jul;52(7):1355-8</RefSource>
<PMID Version="1">16042002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2005 Apr;115(4):1103-9</RefSource>
<PMID Version="1">15793452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2007 May;45(5):421-35</RefSource>
<PMID Version="1">17340155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Minim Invasive Ther Allied Technol. 2004 Apr;13(2):87-94</RefSource>
<PMID Version="1">16754493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transplant Proc. 1997 Feb-Mar;29(1-2):362-3</RefSource>
<PMID Version="1">9123038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2009 May-Jun;14(3):034001</RefSource>
<PMID Version="1">19566295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Gynecol Obstet. 1963 Dec;117:659-76</RefSource>
<PMID Version="1">14100514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Dec;52(12):2016-23</RefSource>
<PMID Version="1">16366225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transpl Int. 1996;9 Suppl 1:S140-3</RefSource>
<PMID Version="1">8959811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Paediatr Anaesth. 2005 Jun;15(6):495-503</RefSource>
<PMID Version="1">15910351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hepatology. 1991 Dec;14(6):1054-62</RefSource>
<PMID Version="1">1959853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transpl Int. 1993 Mar;6(2):73-6</RefSource>
<PMID Version="1">8447928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Biol Med. 1996 Mar;26(2):143-59</RefSource>
<PMID Version="1">8904288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anesthesiology. 2000 Oct;93(4):947-53</RefSource>
<PMID Version="1">11020744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Liver Transpl Surg. 1999 May;5(3):219-26</RefSource>
<PMID Version="1">10226114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Opt Express. 2011 Aug 1;2(8):2096-109</RefSource>
<PMID Version="1">21833350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Intensive Care. 2012 May 08;2(1):11</RefSource>
<PMID Version="1">22569165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2012 Jul;17(7):077008</RefSource>
<PMID Version="1">22894521</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Perinatol. 2012 Sep;39(3):573-83</RefSource>
<PMID Version="1">22954270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Vasc Endovasc Surg. 1996 Jul;12(1):91-6</RefSource>
<PMID Version="1">8696905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 1997 Mar;44(3):148-58</RefSource>
<PMID Version="1">9216128</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006439" MajorTopicYN="N">Hemodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016031" MajorTopicYN="Y">Liver Transplantation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008991" MajorTopicYN="N">Monitoring, Physiologic</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="N">Oxygen Consumption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017156" MajorTopicYN="N">Photoplethysmography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019265" MajorTopicYN="N">Spectroscopy, Near-Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059015" MajorTopicYN="Y">Wireless Technology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4097065</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25019160</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0102396</ArticleId>
<ArticleId IdType="pii">PONE-D-14-12875</ArticleId>
<ArticleId IdType="pmc">PMC4097065</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002415 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002415 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25019160
   |texte=   Wireless monitoring of liver hemodynamics in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25019160" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021