Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.

Identifieur interne : 001E52 ( PubMed/Corpus ); précédent : 001E51; suivant : 001E53

Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.

Auteurs : Edward D. Plowey ; Jon W. Johnson ; Erin Steer ; Wan Zhu ; David A. Eisenberg ; Natalie M. Valentino ; Yong-Jian Liu ; Charleen T. Chu

Source :

RBID : pubmed:24874075

English descriptors

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2), which are associated with autosomal dominant Parkinson's disease, elicit progressive dendrite degeneration in neurons. We hypothesized that synaptic dysregulation contributes to mutant LRRK2-induced dendritic injury. We performed in vitro whole-cell voltage clamp studies of glutamatergic receptor agonist responses and glutamatergic synaptic activity in cultured rat cortical neurons expressing full-length wild-type and mutant forms of LRRK2. Expression of the pathogenic G2019S or R1441C LRRK2 mutants resulted in larger whole-cell current responses to direct application of AMPA and NMDA receptor agonists. In addition, mutant LRRK2-expressing neurons exhibited an increased frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in conjunction with increased excitatory synapse density as assessed by immunofluorescence for PSD95 and VGLUT1. Mutant LRRK2-expressing neurons showed enhanced vulnerability to acute synaptic glutamate stress. Furthermore, treatment with the NMDA receptor antagonist memantine significantly protected against subsequent losses in dendrite length and branching complexity. These data demonstrate an early association between mutant LRRK2 and increased excitatory synapse activity, implicating an excitotoxic contribution to mutant LRRK2 induced dendrite degeneration.

DOI: 10.1016/j.bbadis.2014.05.016
PubMed: 24874075

Links to Exploration step

pubmed:24874075

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.</title>
<author>
<name sortKey="Plowey, Edward D" sort="Plowey, Edward D" uniqKey="Plowey E" first="Edward D" last="Plowey">Edward D. Plowey</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jon W" sort="Johnson, Jon W" uniqKey="Johnson J" first="Jon W" last="Johnson">Jon W. Johnson</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steer, Erin" sort="Steer, Erin" uniqKey="Steer E" first="Erin" last="Steer">Erin Steer</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Wan" sort="Zhu, Wan" uniqKey="Zhu W" first="Wan" last="Zhu">Wan Zhu</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eisenberg, David A" sort="Eisenberg, David A" uniqKey="Eisenberg D" first="David A" last="Eisenberg">David A. Eisenberg</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Valentino, Natalie M" sort="Valentino, Natalie M" uniqKey="Valentino N" first="Natalie M" last="Valentino">Natalie M. Valentino</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yong Jian" sort="Liu, Yong Jian" uniqKey="Liu Y" first="Yong-Jian" last="Liu">Yong-Jian Liu</name>
<affiliation>
<nlm:affiliation>Department of Physiology, Nanjing Medical University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chu, Charleen T" sort="Chu, Charleen T" uniqKey="Chu C" first="Charleen T" last="Chu">Charleen T. Chu</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: ctc4@pitt.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24874075</idno>
<idno type="pmid">24874075</idno>
<idno type="doi">10.1016/j.bbadis.2014.05.016</idno>
<idno type="wicri:Area/PubMed/Corpus">001E52</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.</title>
<author>
<name sortKey="Plowey, Edward D" sort="Plowey, Edward D" uniqKey="Plowey E" first="Edward D" last="Plowey">Edward D. Plowey</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Jon W" sort="Johnson, Jon W" uniqKey="Johnson J" first="Jon W" last="Johnson">Jon W. Johnson</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steer, Erin" sort="Steer, Erin" uniqKey="Steer E" first="Erin" last="Steer">Erin Steer</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Wan" sort="Zhu, Wan" uniqKey="Zhu W" first="Wan" last="Zhu">Wan Zhu</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Stanford University, Stanford, CA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eisenberg, David A" sort="Eisenberg, David A" uniqKey="Eisenberg D" first="David A" last="Eisenberg">David A. Eisenberg</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Valentino, Natalie M" sort="Valentino, Natalie M" uniqKey="Valentino N" first="Natalie M" last="Valentino">Natalie M. Valentino</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yong Jian" sort="Liu, Yong Jian" uniqKey="Liu Y" first="Yong-Jian" last="Liu">Yong-Jian Liu</name>
<affiliation>
<nlm:affiliation>Department of Physiology, Nanjing Medical University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chu, Charleen T" sort="Chu, Charleen T" uniqKey="Chu C" first="Charleen T" last="Chu">Charleen T. Chu</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: ctc4@pitt.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Calcium (metabolism)</term>
<term>Cells, Cultured</term>
<term>Dendrites (drug effects)</term>
<term>Dendrites (physiology)</term>
<term>Dopamine Agents (pharmacology)</term>
<term>Electrophysiology</term>
<term>Female</term>
<term>Glutamates (metabolism)</term>
<term>Immunoenzyme Techniques</term>
<term>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</term>
<term>Memantine (pharmacology)</term>
<term>Mutation (genetics)</term>
<term>Neurons (drug effects)</term>
<term>Neurons (physiology)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Signal Transduction (drug effects)</term>
<term>Synapses (drug effects)</term>
<term>Synapses (physiology)</term>
<term>Synaptosomes (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Glutamates</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Dendrites</term>
<term>Neurons</term>
<term>Signal Transduction</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Dopamine Agents</term>
<term>Memantine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Dendrites</term>
<term>Neurons</term>
<term>Synapses</term>
<term>Synaptosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Electrophysiology</term>
<term>Female</term>
<term>Immunoenzyme Techniques</term>
<term>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mutations in leucine-rich repeat kinase 2 (LRRK2), which are associated with autosomal dominant Parkinson's disease, elicit progressive dendrite degeneration in neurons. We hypothesized that synaptic dysregulation contributes to mutant LRRK2-induced dendritic injury. We performed in vitro whole-cell voltage clamp studies of glutamatergic receptor agonist responses and glutamatergic synaptic activity in cultured rat cortical neurons expressing full-length wild-type and mutant forms of LRRK2. Expression of the pathogenic G2019S or R1441C LRRK2 mutants resulted in larger whole-cell current responses to direct application of AMPA and NMDA receptor agonists. In addition, mutant LRRK2-expressing neurons exhibited an increased frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in conjunction with increased excitatory synapse density as assessed by immunofluorescence for PSD95 and VGLUT1. Mutant LRRK2-expressing neurons showed enhanced vulnerability to acute synaptic glutamate stress. Furthermore, treatment with the NMDA receptor antagonist memantine significantly protected against subsequent losses in dendrite length and branching complexity. These data demonstrate an early association between mutant LRRK2 and increased excitatory synapse activity, implicating an excitotoxic contribution to mutant LRRK2 induced dendrite degeneration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24874075</PMID>
<DateCreated>
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>05</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1842</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim. Biophys. Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.</ArticleTitle>
<Pagination>
<MedlinePgn>1596-603</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbadis.2014.05.016</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0925-4439(14)00144-6</ELocationID>
<Abstract>
<AbstractText>Mutations in leucine-rich repeat kinase 2 (LRRK2), which are associated with autosomal dominant Parkinson's disease, elicit progressive dendrite degeneration in neurons. We hypothesized that synaptic dysregulation contributes to mutant LRRK2-induced dendritic injury. We performed in vitro whole-cell voltage clamp studies of glutamatergic receptor agonist responses and glutamatergic synaptic activity in cultured rat cortical neurons expressing full-length wild-type and mutant forms of LRRK2. Expression of the pathogenic G2019S or R1441C LRRK2 mutants resulted in larger whole-cell current responses to direct application of AMPA and NMDA receptor agonists. In addition, mutant LRRK2-expressing neurons exhibited an increased frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in conjunction with increased excitatory synapse density as assessed by immunofluorescence for PSD95 and VGLUT1. Mutant LRRK2-expressing neurons showed enhanced vulnerability to acute synaptic glutamate stress. Furthermore, treatment with the NMDA receptor antagonist memantine significantly protected against subsequent losses in dendrite length and branching complexity. These data demonstrate an early association between mutant LRRK2 and increased excitatory synapse activity, implicating an excitotoxic contribution to mutant LRRK2 induced dendrite degeneration.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plowey</LastName>
<ForeName>Edward D</ForeName>
<Initials>ED</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Jon W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steer</LastName>
<ForeName>Erin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Wan</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eisenberg</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valentino</LastName>
<ForeName>Natalie M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yong-Jian</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Nanjing Medical University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Charleen T</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: ctc4@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 NS007391</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AG026389</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS065789</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 MH045817</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01MH045817</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32NS07391</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01NS065789</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K08 NS085324</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS074056</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG026389</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21NS074056</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015259">Dopamine Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005971">Glutamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C547428">LRRK2 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000071158">Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W8O17SJF3T</RegistryNumber>
<NameOfSubstance UI="D008559">Memantine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2008 Jun 10;314(10):2055-65</RefSource>
<PMID Version="1">18445495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2013 Feb;182(2):474-84</RefSource>
<PMID Version="1">23231918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Jan 28;29(4):1011-6</RefSource>
<PMID Version="1">19176810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 2009;453:217-49</RefSource>
<PMID Version="1">19216909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Jul;12(7):826-8</RefSource>
<PMID Version="1">19503083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16842-7</RefSource>
<PMID Version="1">16269541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18676-81</RefSource>
<PMID Version="1">16352719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 May 1;572(Pt 3):789-98</RefSource>
<PMID Version="1">16513670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2006 Aug;23(2):329-41</RefSource>
<PMID Version="1">16750377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2006 Oct;9(10):1231-3</RefSource>
<PMID Version="1">16980962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 Nov 22;52(4):587-93</RefSource>
<PMID Version="1">17114044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2007 Jan 15;16(2):223-32</RefSource>
<PMID Version="1">17200152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2007 Jun 8;357(3):668-71</RefSource>
<PMID Version="1">17442267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2007 Jul 15;405(2):307-17</RefSource>
<PMID Version="1">17447891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2007 Sep 1;16(17):2031-9</RefSource>
<PMID Version="1">17584768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2007 Oct 1;313(16):3658-70</RefSource>
<PMID Version="1">17706965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2007 Oct;8(10):939-44</RefSource>
<PMID Version="1">17721437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 May;105(3):1048-56</RefSource>
<PMID Version="1">18182054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2014 Mar;17(3):367-76</RefSource>
<PMID Version="1">24464040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ASN Neuro. 2009;1(1). pii: e00002. doi: 10.1042/AN20090007</RefSource>
<PMID Version="1">19570025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14622-7</RefSource>
<PMID Version="1">19667187</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2009 Oct 6;163(2):533-9</RefSource>
<PMID Version="1">19559761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Nov 1;18(21):4022-34</RefSource>
<PMID Version="1">19640926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 Jan 1;538(Pt 1):65-77</RefSource>
<PMID Version="1">11773317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2002 May;5(5):405-14</RefSource>
<PMID Version="1">11953750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytometry A. 2004 Apr;58(2):167-76</RefSource>
<PMID Version="1">15057970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Nov 18;44(4):595-600</RefSource>
<PMID Version="1">15541308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Nov 18;44(4):601-7</RefSource>
<PMID Version="1">15541309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Jun 2;46(5):745-60</RefSource>
<PMID Version="1">15924861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2008 Jun;86(8):1711-20</RefSource>
<PMID Version="1">18214993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Nov 4;29(44):13971-80</RefSource>
<PMID Version="1">19890007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2010 Mar;32(3):227-35</RefSource>
<PMID Version="1">20127702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2010 Apr;6(4):e1000902</RefSource>
<PMID Version="1">20386743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2010 Jul 6;49(26):5511-23</RefSource>
<PMID Version="1">20515039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jul 29;466(7306):637-41</RefSource>
<PMID Version="1">20671708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Aug 18;30(33):11246-50</RefSource>
<PMID Version="1">20720132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Aug 23;190(4):533-9</RefSource>
<PMID Version="1">20713600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2010 Oct;11(10):682-96</RefSource>
<PMID Version="1">20842175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2010 Dec;16(10):650-5</RefSource>
<PMID Version="1">20850369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Dec 15;30(50):16959-69</RefSource>
<PMID Version="1">21159966</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Feb 9;31(6):2225-37</RefSource>
<PMID Version="1">21307259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(4):e18568</RefSource>
<PMID Version="1">21494637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 May 6;286(18):16140-9</RefSource>
<PMID Version="1">21454543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Dis. 2011;2:e196</RefSource>
<PMID Version="1">21866175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 Dec 24;64(6):807-27</RefSource>
<PMID Version="1">20064389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Nov 1;20(21):4209-23</RefSource>
<PMID Version="1">21828077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 Feb 1;21(3):511-25</RefSource>
<PMID Version="1">22012985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 May 1;21(9):1931-44</RefSource>
<PMID Version="1">22228096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 May 9;32(19):6732-42</RefSource>
<PMID Version="1">22573696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 Oct 1;21(19):4201-13</RefSource>
<PMID Version="1">22736029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Sep 20;75(6):1008-21</RefSource>
<PMID Version="1">22998870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19492-7</RefSource>
<PMID Version="1">19033459</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003712" MajorTopicYN="N">Dendrites</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015259" MajorTopicYN="N">Dopamine Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004594" MajorTopicYN="N">Electrophysiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005971" MajorTopicYN="N">Glutamates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007124" MajorTopicYN="N">Immunoenzyme Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071158" MajorTopicYN="N">Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008559" MajorTopicYN="N">Memantine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013569" MajorTopicYN="N">Synapses</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013574" MajorTopicYN="N">Synaptosomes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS601561</OtherID>
<OtherID Source="NLM">PMC4144018</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Calcium</Keyword>
<Keyword MajorTopicYN="N">Excitotoxicity</Keyword>
<Keyword MajorTopicYN="N">LRRK2</Keyword>
<Keyword MajorTopicYN="N">Neurodegeneration</Keyword>
<Keyword MajorTopicYN="N">Parkinson's Disease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24874075</ArticleId>
<ArticleId IdType="pii">S0925-4439(14)00144-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbadis.2014.05.016</ArticleId>
<ArticleId IdType="pmc">PMC4144018</ArticleId>
<ArticleId IdType="mid">NIHMS601561</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001E52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24874075
   |texte=   Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24874075" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021