Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.

Identifieur interne : 001713 ( PubMed/Corpus ); précédent : 001712; suivant : 001714

Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.

Auteurs : Ranmal A. Samarasinghe ; Prasad S. Kanuparthi ; J. Timothy Greenamyre ; Donald B. Defranco ; Roberto Di Maio

Source :

RBID : pubmed:25003306

English descriptors

Abstract

While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.

DOI: 10.1016/j.nbd.2014.06.020
PubMed: 25003306

Links to Exploration step

pubmed:25003306

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.</title>
<author>
<name sortKey="Samarasinghe, Ranmal A" sort="Samarasinghe, Ranmal A" uniqKey="Samarasinghe R" first="Ranmal A" last="Samarasinghe">Ranmal A. Samarasinghe</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA. Electronic address: ranmals@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanuparthi, Prasad S" sort="Kanuparthi, Prasad S" uniqKey="Kanuparthi P" first="Prasad S" last="Kanuparthi">Prasad S. Kanuparthi</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timothy Greenamyre, J" sort="Timothy Greenamyre, J" uniqKey="Timothy Greenamyre J" first="J" last="Timothy Greenamyre">J. Timothy Greenamyre</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Defranco, Donald B" sort="Defranco, Donald B" uniqKey="Defranco D" first="Donald B" last="Defranco">Donald B. Defranco</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA. Electronic address: dod1@pitt.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Di Maio, Roberto" sort="Di Maio, Roberto" uniqKey="Di Maio R" first="Roberto" last="Di Maio">Roberto Di Maio</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25003306</idno>
<idno type="pmid">25003306</idno>
<idno type="doi">10.1016/j.nbd.2014.06.020</idno>
<idno type="wicri:Area/PubMed/Corpus">001713</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001713</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.</title>
<author>
<name sortKey="Samarasinghe, Ranmal A" sort="Samarasinghe, Ranmal A" uniqKey="Samarasinghe R" first="Ranmal A" last="Samarasinghe">Ranmal A. Samarasinghe</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA. Electronic address: ranmals@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanuparthi, Prasad S" sort="Kanuparthi, Prasad S" uniqKey="Kanuparthi P" first="Prasad S" last="Kanuparthi">Prasad S. Kanuparthi</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timothy Greenamyre, J" sort="Timothy Greenamyre, J" uniqKey="Timothy Greenamyre J" first="J" last="Timothy Greenamyre">J. Timothy Greenamyre</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Defranco, Donald B" sort="Defranco, Donald B" uniqKey="Defranco D" first="Donald B" last="Defranco">Donald B. Defranco</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA. Electronic address: dod1@pitt.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Di Maio, Roberto" sort="Di Maio, Roberto" uniqKey="Di Maio R" first="Roberto" last="Di Maio">Roberto Di Maio</name>
<affiliation>
<nlm:affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neurobiology of disease</title>
<idno type="eISSN">1095-953X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chronic Disease</term>
<term>Disease Models, Animal</term>
<term>Epilepsy (physiopathology)</term>
<term>GABAergic Neurons (drug effects)</term>
<term>GABAergic Neurons (physiology)</term>
<term>Gap Junctions (drug effects)</term>
<term>Gap Junctions (physiology)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Hippocampus (drug effects)</term>
<term>Hippocampus (physiopathology)</term>
<term>Humans</term>
<term>Induced Pluripotent Stem Cells (drug effects)</term>
<term>Induced Pluripotent Stem Cells (physiology)</term>
<term>Male</term>
<term>Mice</term>
<term>Muscarinic Agonists (pharmacology)</term>
<term>Neural Stem Cells (drug effects)</term>
<term>Neural Stem Cells (physiology)</term>
<term>Neurogenesis (drug effects)</term>
<term>Neurogenesis (physiology)</term>
<term>Pilocarpine (pharmacology)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Receptors, Metabotropic Glutamate (metabolism)</term>
<term>Receptors, Muscarinic (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutamic Acid</term>
<term>Receptors, Metabotropic Glutamate</term>
<term>Receptors, Muscarinic</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>GABAergic Neurons</term>
<term>Gap Junctions</term>
<term>Hippocampus</term>
<term>Induced Pluripotent Stem Cells</term>
<term>Neural Stem Cells</term>
<term>Neurogenesis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Muscarinic Agonists</term>
<term>Pilocarpine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>GABAergic Neurons</term>
<term>Gap Junctions</term>
<term>Induced Pluripotent Stem Cells</term>
<term>Neural Stem Cells</term>
<term>Neurogenesis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Epilepsy</term>
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chronic Disease</term>
<term>Disease Models, Animal</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25003306</PMID>
<DateCreated>
<Year>2014</Year>
<Month>08</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-953X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>70</Volume>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Neurobiology of disease</Title>
<ISOAbbreviation>Neurobiol. Dis.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.</ArticleTitle>
<Pagination>
<MedlinePgn>252-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.nbd.2014.06.020</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0969-9961(14)00184-3</ELocationID>
<Abstract>
<AbstractText>While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Samarasinghe</LastName>
<ForeName>Ranmal A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA. Electronic address: ranmals@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kanuparthi</LastName>
<ForeName>Prasad S</ForeName>
<Initials>PS</Initials>
<AffiliationInfo>
<Affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Timothy Greenamyre</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DeFranco</LastName>
<ForeName>Donald B</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA. Electronic address: dod1@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Di Maio</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>UL1 TR000005</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 RR024153</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK078394</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1UL1 RR024153</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK078394</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neurobiol Dis</MedlineTA>
<NlmUniqueID>9500169</NlmUniqueID>
<ISSNLinking>0969-9961</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018721">Muscarinic Agonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018094">Receptors, Metabotropic Glutamate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011976">Receptors, Muscarinic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104077">metabotropic glutamate receptor type 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>01MI4Q9DI3</RegistryNumber>
<NameOfSubstance UI="D010862">Pilocarpine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2008 May;31(5):243-50</RefSource>
<PMID Version="1">18403031</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells. 2008 Apr;26(4):988-96</RefSource>
<PMID Version="1">18218818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2008 Oct;14(5):446-58</RefSource>
<PMID Version="1">18997123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurol. 2009 Jul;5(7):380-91</RefSource>
<PMID Version="1">19578345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2010 Mar 1;518(5):647-67</RefSource>
<PMID Version="1">20034063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Feb 11;65(3):358-72</RefSource>
<PMID Version="1">20159449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2011 Mar 8;76(10):895-902</RefSource>
<PMID Version="1">21383325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 Jun;42(3):482-95</RefSource>
<PMID Version="1">21397025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16657-62</RefSource>
<PMID Version="1">21930911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Cycle. 2012 Aug 1;11(15):2819-27</RefSource>
<PMID Version="1">22801547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Sep 26;32(39):13630-8</RefSource>
<PMID Version="1">23015452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1524-32</RefSource>
<PMID Version="1">23576737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(11):e79350</RefSource>
<PMID Version="1">24236122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2014 Feb;62:44-55</RefSource>
<PMID Version="1">24051276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2013 Jan;49:87-98</RefSource>
<PMID Version="1">22824136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Schizophr Bull. 2015 Jan;41(1):123-32</RefSource>
<PMID Version="1">24622295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 1999 Nov 15;215(2):298-313</RefSource>
<PMID Version="1">10545239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Epilepsia. 2000;41 Suppl 6:S53-6</RefSource>
<PMID Version="1">10999520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2002 Mar 1;929(1):105-16</RefSource>
<PMID Version="1">11852037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Jan 1;23(1):103-11</RefSource>
<PMID Version="1">12514206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biochem Cell Biol. 2004 Jul;36(7):1171-86</RefSource>
<PMID Version="1">15109565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2004 Aug 1;272(1):203-16</RefSource>
<PMID Version="1">15242801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Sep 2;43(5):647-61</RefSource>
<PMID Version="1">15339647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1991 Feb;111(2):198-203</RefSource>
<PMID Version="1">1846600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1991 Mar;29(3):293-8</RefSource>
<PMID Version="1">2042946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1995 Jun 29;375(6534):784-7</RefSource>
<PMID Version="1">7596410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 May 15;17(10):3727-38</RefSource>
<PMID Version="1">9133393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1997 May;145(1):154-64</RefSource>
<PMID Version="1">9184118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Pharmacol. 1997 Jul;121(6):1171-9</RefSource>
<PMID Version="1">9249254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1999 Sep 27;412(3):488-505</RefSource>
<PMID Version="1">10441235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2005 Jun 10;1711(2):172-82</RefSource>
<PMID Version="1">15955302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Dec 8;48(5):787-96</RefSource>
<PMID Version="1">16337916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 May 30;103(22):8465-8</RefSource>
<PMID Version="1">16709666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2006 Jun;22(3):496-508</RefSource>
<PMID Version="1">16478664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Tissue Res. 2006 Nov;326(2):239-48</RefSource>
<PMID Version="1">16896946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Aug 23;448(7156):901-7</RefSource>
<PMID Version="1">17713529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2008 Jul 30;172(2):143-57</RefSource>
<PMID Version="1">18550176</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002908" MajorTopicYN="N">Chronic Disease</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004827" MajorTopicYN="N">Epilepsy</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059330" MajorTopicYN="N">GABAergic Neurons</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017629" MajorTopicYN="N">Gap Junctions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057026" MajorTopicYN="N">Induced Pluripotent Stem Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018721" MajorTopicYN="N">Muscarinic Agonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058953" MajorTopicYN="N">Neural Stem Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055495" MajorTopicYN="N">Neurogenesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010862" MajorTopicYN="N">Pilocarpine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018094" MajorTopicYN="N">Receptors, Metabotropic Glutamate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011976" MajorTopicYN="N">Receptors, Muscarinic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS612531</OtherID>
<OtherID Source="NLM">PMC4152385</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Connexin</Keyword>
<Keyword MajorTopicYN="N">Epileptogenesis</Keyword>
<Keyword MajorTopicYN="N">Glutamate receptor</Keyword>
<Keyword MajorTopicYN="N">Neural stem cell</Keyword>
<Keyword MajorTopicYN="N">Pilocarpine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25003306</ArticleId>
<ArticleId IdType="pii">S0969-9961(14)00184-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.nbd.2014.06.020</ArticleId>
<ArticleId IdType="pmc">PMC4152385</ArticleId>
<ArticleId IdType="mid">NIHMS612531</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001713 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001713 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25003306
   |texte=   Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25003306" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021